scholarly journals Mixed Logic Dynamic Models for MPC Control of Wind Farm Hydrogen-Based Storage Systems

Inventions ◽  
2019 ◽  
Vol 4 (4) ◽  
pp. 57 ◽  
Author(s):  
Muhammad Faisal Shehzad ◽  
Muhammad Bakr Abdelghany ◽  
Davide Liuzza ◽  
Valerio Mariani ◽  
Luigi Glielmo

The use of electric power by wind generation in actual grids is hampered by its inherent stochastic nature and the penalty deviations adopted in several electricity regulation markets with respect to power quality requirements. Coupling wind farms with advanced Energy Storage Systems (ESS) can help their integration within grids. In this direction, several studies have been conducted, but the problem is still open due to the constraints and limitations regarding the ESSs time autonomy, time response, degradation issues and overall costs. In order to take into account these relevant aspects, advanced control algorithms are needed. In this paper, a Model-Based Predictive Controller (MPC) is presented. Such a controller minimizes the degradation of the ESS and the load tracking error while fulfilling the operational constraints and dynamics. The ESS considered is hydrogen-based and the study has been developed within the EU-FCH 2 JU (European Union Fuel Cells and Hydrogen 2 Joint Undertaking) funded project HAEOLUS aiming at building and integrating advanced control strategies for a hydrogen-based ESS within a wind farm fence. Numerical simulations show the feasibility and the effectiveness of the proposed approach.

Author(s):  
Congshan Li ◽  
Pu Zhong ◽  
Ping He ◽  
Yan Liu ◽  
Yan Fang ◽  
...  

: Two VSC-MTDC control strategies with different combinations of controllers are proposed to eliminate transient fluctuations in the DC voltage stability, resulting from a power imbalance in a VSC-MTDC connected to wind farms. First, an analysis is performed of a topological model of a VSC converter station and a VSC-MTDC, as well as of a mathematical model of a wind turbine. Then, the principles and characteristics of DC voltage slope control, constant active power control, and inner loop current control used in the VSC-MTDC are introduced. Finally, the PSCAD/EMTDC platform is used to establish an electromagnetic transient model of a wind farm connected to a parallel three-terminal VSC-HVDC. An analysis is performed for three cases of single-phase grounding faults on the rectifier and inverter sides of a converter station and of the withdrawal of the converter station on the rectifier side. Next, the fault response characteristics of VSC-MTDC are compared and analyzed. The simulation results verify the effectiveness of the two control strategies, both of which enable the system to maintain DC voltage stability and active power balance in the event of a fault. Background: The use of a VSC-MTDC to connect wind power to the grid has attracted considerable attention in recent years. A suitable VSC-MTDC control method can enable the stable operation of a power grid. Objective: The study aims to eliminate transient fluctuations in the DC voltage stability resulting from a power imbalance in a VSC-MTDC connected to a wind farm. Method: First, the topological structure and a model of a three-terminal VSC-HVDC system connected to wind farms are studied. Second, an analysis is performed of the outer loop DC voltage slope control, constant active power control and inner loop current control of the converter station of a VSC-MTDC. Two different control strategies are proposed for the parallel three-terminal VSC-HVDC system: the first is DC voltage slope control for the rectifier station and constant active power control for the inverter station, and the second is DC voltage slope control for the inverter station and constant active power for the rectifier station. Finally, a parallel three-terminal VSC-HVDC model is built based on the PSCAD/EMTDC platform and used to verify the accuracy and effectiveness of the proposed control strategy. Results: The results of simulation analysis of the faults on the rectifier and inverter sides of the system show that both strategies can restore the system to the stable operation. The effectiveness of the proposed control strategy is thus verified. Conclusion: The control strategy proposed in this paper provides a technical reference for designing a VSC-MTDC system for wind farms.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 544 ◽  
Author(s):  
Tanvir Ahmad ◽  
Abdul Basit ◽  
Juveria Anwar ◽  
Olivier Coupiac ◽  
Behzad Kazemtabrizi ◽  
...  

A practical wind farm controller for production maximisation based on coordinated control is presented. The farm controller emphasises computational efficiency without compromising accuracy. The controller combines particle swarm optimisation (PSO) with a turbulence intensity–based Jensen wake model (TI–JM) for exploiting the benefits of either curtailing upstream turbines using coefficient of power ( C P ) or deflecting wakes by applying yaw-offsets for maximising net farm production. Firstly, TI–JM is evaluated using convention control benchmarking WindPRO and real time SCADA data from three operating wind farms. Then the optimised strategies are evaluated using simulations based on TI–JM and PSO. The innovative control strategies can optimise a medium size wind farm, Lillgrund consisting of 48 wind turbines, requiring less than 50 s for a single simulation, increasing farm efficiency up to a maximum of 6% in full wake conditions.


2011 ◽  
Vol 347-353 ◽  
pp. 2342-2346
Author(s):  
Rong Fu ◽  
Bao Yun Wang ◽  
Wan Peng Sun

With increasing installation capacity and wind farms penetration, wind power plays more important role in power systems, and the modeling of wind farms has become an interesting research topic. In this paper, a coherency-based equivalent model has been discussed for the doubly fed induction generator (DFIG). Firstly, the dynamic models of wind turbines, DFIG and the mechanisms are briefly introduced. Some existing dynamic equivalent methods such as equivalent wind model, variable speed wind turbine model, parameter identification method and modal equivalent method to be used in wind farm aggregation are discussed. Then, considering wind power fluctuations, a new equivalent model of a wind farm equipped with doubly-fed induction generators is proposed to represent the interactions of the wind farm and grid. The method proposed is based on aggregating the coherent group wind turbines into an equivalent one. Finally, the effectiveness of the equivalent model is demonstrated by comparison with the wind farm response obtained from the detailed model. The dynamic simulations show that the present model can greatly reduce the computation time and model complexity.


2021 ◽  
Vol 58 (2) ◽  
pp. 11-18
Author(s):  
E. Groza ◽  
M. Balodis ◽  
K. Gulbis ◽  
J. Dirba

Abstract The paper covers the main aspects and restrictions on siting small-scale wind farms in Latvia and benefits of using energy storage systems with small-scale wind farms. The restrictions of siting have been analysed. Grid connection restrictions are addressed as the main issues for small-scale wind farm development in Latvia. Two small-scale wind farm models with similar properties have been made and analysed within the framework of the research. The paper proposes the idea for maximising the production of small-scale wind farm in a small area site with high wind potential.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1266 ◽  
Author(s):  
Tanvir Ahmad ◽  
Abdul Basit ◽  
Muneeb Ahsan ◽  
Olivier Coupiac ◽  
Nicolas Girard ◽  
...  

This paper presents, with a live field experiment, the potential of increasing wind farm power generation by optimally yawing upstream wind turbine for reducing wake effects as a part of the SmartEOLE project. Two 2MW turbines from the Le Sole de Moulin Vieux (SMV) wind farm are used for this purpose. The upstream turbine (SMV6) is operated with a yaw offset ( α ) in a range of − 12 ° to 8° for analysing the impact on the downstream turbine (SMV5). Simulations are performed with intelligent control strategies for estimating optimum α settings. Simulations show that optimal α can increase net production of the two turbines by more than 5%. The impact of α on SMV6 is quantified using the data obtained during the experiment. A comparison of the data obtained during the experiment is carried out with data obtained during normal operations in similar wind conditions. This comparison show that an optimum or near-optimum α increases net production by more than 5% in wake affected wind conditions, which is in confirmation with the simulated results.


2006 ◽  
Vol 39 (2) ◽  
pp. 795-800
Author(s):  
Eduardo C. Vasco de Toledo ◽  
Delba Nisi C. Melo ◽  
José Marcos F. da Silva ◽  
Viktor O.C. Concha ◽  
João Frederico da C.A. Meyer ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1164 ◽  
Author(s):  
Julian Barreiro-Gomez ◽  
Carlos Ocampo-Martinez ◽  
Fernando Bianchi ◽  
Nicanor Quijano

In wind farms, the interaction between turbines that operate close by experience some problems in terms of their power generation. Wakes caused by upstream turbines are mainly responsible of these interactions, and the phenomena involved in this case is complex especially when the number of turbines is high. In order to deal with these issues, there is a need to develop control strategies that maximize the energy captured from a wind farm. In this work, an algorithm that uses multiple estimated gradients based on measurements that are classified by using a simple distributed population-games-based algorithm is proposed. The update in the decision variables is computed by making a superposition of the estimated gradients together with the classification of the measurements. In order to maximize the energy captured and maintain the individual power generation, several constraints are considered in the proposed algorithm. Basically, the proposed control scheme reduces the communications needed, which increases the reliability of the wind farm operation. The control scheme is validated in simulation in a benchmark corresponding to the Horns Rev wind farm.


2018 ◽  
Author(s):  
Wim Munters ◽  
Johan Meyers

Abstract. Wake interactions between wind turbines in wind farms lead to reduced energy extraction in downstream rows. In recent work, optimization and large-eddy simulation were combined with optimal dynamic induction control of wind farms to study the mitigation of these effects, showing potential power gains of up to 20 % (Munters & Meyers 2017 Phil Trans R Soc A 375, 20160100, doi:10.1098/rsta.2016.0100). However, the computational cost associated with these optimal control simulations impedes practical implementation of this approach. Furthermore, the resulting control signals optimally react to the specific instantaneous turbulent flow realizations in the simulations, so that they cannot be simply used in general. The current work focuses on the detailed analysis of the optimization results of Munters & Meyers, with the aim to identify simplified control strategies that mimic the optimal control results and can be used in practice. The analysis shows that wind-farm controls are optimized in a parabolic manner with little upstream propagation of information. Moreover, turbines can be classified into first-row, intermediate-row, and last-row turbines based on their optimal control dynamics. At the moment, the control mechanisms for intermediate-row turbines remain unclear, but for first-row turbines we find that the optimal controls increase wake mixing by periodic shedding of vortex rings. This behavior can be mimicked with a simple sinusoidal thrust control strategy for first-row turbines, resulting in robust power gains for turbines in the entrance region of the farm.


2021 ◽  
Author(s):  
Lichuan Ren ◽  
Zhimin Xi

Abstract Path tracking error control is an important functionality in the development of autonomous vehicles when a collision-free path has been planned. Large path tracking errors could lead to collision or even out of the control of the vehicle. Vehicle dynamic models are used to minimize the vehicle path tracking error so that control strategies can be designed under different scenarios. However, the vehicle dynamic model may not truly represent the actual vehicle dynamics. Furthermore, the nominal parameter employed in the vehicle dynamic model cannot represent actual operating conditions of the vehicle under environmental uncertainty. This paper presents a learning-based bias modeling method to improve the fidelity of any baseline vehicle dynamics model so that effective path tracking controller design can be achieved through a low fidelity but high-efficiency vehicle dynamic model with the aid of a few experiments or high fidelity simulations. The state-of-the-art of machine learning models, such as Gaussian process (GP) regression, recurrent neural network (RNN), and long short-term memory (LSTM) network, are employed for bias learning and comparison. A high-fidelity vehicle simulator, CARLA, is employed to collect virtual test data and demonstrate the effectiveness of the proposed bias-learning based control strategies under environmental uncertainty.


2018 ◽  
Vol 61 ◽  
pp. 00002 ◽  
Author(s):  
Djamel Ikni ◽  
Ahmed Ousmane Bagre ◽  
Mamadou Bailo Camara ◽  
Brayima Dakyo

The injection of wind farm production into a grid, needs optimal strategies for energy transfer management. Usually, the power produced by the wind farms does not fulfil all the grid code requirements. The main problem is generally based on the way to reduce the impacts of power production fluctuations on the grid voltage and its frequency. To solve this problem, some authors suggest the use of an interface such as energy storage devices in order to compensate the wind power fluctuations. In fact, the storage devices installed between the wind farm and the grid can improve the power quality in terms of stability but in other hand the size and the cost of the system can be increased. In this paper, two solutions have been proposed in case the power quality produced by the wind farm is out of the grid code requirements. The improvement of the energy quality of an offshore wind farm without storage and connected to the grid is discussed. The proposed solution is to operate the wind turbines with a reserve of power. To distribute this reserve equitably among wind turbines, a proportional distribution algorithms has been developed. The results obtained show clearly the effectiveness of the strategy.


Sign in / Sign up

Export Citation Format

Share Document