scholarly journals Visual and Artistic Effects of an IoT System in Smart Cities: Research Flow

IoT ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 161-179
Author(s):  
Mariana-Daniela González-Zamar ◽  
Emilio Abad-Segura

In smart cities, the progress of technology has allowed the implementation of sensors, originating the Internet of Things (IoT) and making cities safer and more sustainable. Hence, the presence of elements that generate visual and artistic effects of IoT technology can make a great contribution to the provision of information that the urbanite needs. The aim of this study is to analyze worldwide research on the visual and artistic effects of IoT in smart cities. Bibliometric techniques were utilized on 1278 articles on this subject matter for the period of 2010–2019 to achieve results on activity production. This has increased yearly, where in the last triennium, it has accumulated 85.21% of documents. Computer science and engineering were the most prominent subject areas where the articles were classified. The lines of research in the development of this research topic have been detected. Furthermore, the main directions for future research have also been identified. This study aims to contribute to highlighting the drivers of this field of research, in addition to providing the available information and future directions to improve academic and scientific discussion.

Author(s):  
Faris. A. Almalki ◽  
S. H. Alsamhi ◽  
Radhya Sahal ◽  
Jahan Hassan ◽  
Ammar Hawbani ◽  
...  

AbstractThe development of the Internet of Things (IoT) technology and their integration in smart cities have changed the way we work and live, and enriched our society. However, IoT technologies present several challenges such as increases in energy consumption, and produces toxic pollution as well as E-waste in smart cities. Smart city applications must be environmentally-friendly, hence require a move towards green IoT. Green IoT leads to an eco-friendly environment, which is more sustainable for smart cities. Therefore, it is essential to address the techniques and strategies for reducing pollution hazards, traffic waste, resource usage, energy consumption, providing public safety, life quality, and sustaining the environment and cost management. This survey focuses on providing a comprehensive review of the techniques and strategies for making cities smarter, sustainable, and eco-friendly. Furthermore, the survey focuses on IoT and its capabilities to merge into aspects of potential to address the needs of smart cities. Finally, we discuss challenges and opportunities for future research in smart city applications.


2019 ◽  
Vol 11 (3) ◽  
pp. 763 ◽  
Author(s):  
Frauke Behrendt

This article asks how cycling, a sustainable form of urban mobility, is discussed in the context of smart cities and the Internet of Things in European Commission (EC) policy documents, and how this compares to discussions around cars. Sustainable forms of transport, such as cycling, are a key issue for cities across the globe, including smart cities, while transport is increasingly becoming part of the Internet of Things (IoT). This article contributes to an understanding of how cars and bicycles are discussed in this context. To do so, 39 relevant EC policy documents (2014–2018) were identified and examined through keyword searches and rigorous document analysis. The results show how the vast majority of policy discussions in this area revolve around cars (including autonomous cars and smart vehicles), while cycling is hardly considered, with a strong affinity between IoT and cars. In addition, recent EC policy debates take place more around IoT than around Smart Cities, while sustainability is not considered much in the IoT context. The conclusion highlights the implications of sustainable urban modes of transport such as cycling being absent from IoT/smart debates, including lack of policy visibility and funding opportunities, underlining the significance of this research, and it also makes policy suggestions for addressing these issues and for future research.


Author(s):  
Md Jahidul Islam ◽  
Anichur Rahman ◽  
Sumaiya Kabir ◽  
Ayesha Khatun ◽  
Ahmed Iqbal Pritom ◽  
...  

The Internet of Things (IoT) is a key developing innovation aimed at linking objects via the Internet. While, Software Defined Networking (SDN) is another modern network- ing domain intelligence innovation that increases network effi- ciency and enhances security, reliability, and protection through dynamic software programs. In this paper, we proposed a distributed secure SDoT-NFV architecture for smart cities with Network Function Virtualization (NFV) implementation. We integrated highly protected SDN that delivers better network ef- ficiency, protection, and privacy results. It also secures metadata within each layer as well as payload. In addition, this architecture attempted to implement a more efficient method for constructing a cluster via SDN. Moreover, SDN-IoT with the NFV ideas brings benefits in terms of energy conservation and load balancing to the relevant fields. In addition, several distributed controllers have suggested enhancing accessibility, integrity, anonymity, con- fidentiality, and so on. We also implemented an energy-efficient Cluster Head Selection (CHS) algorithm to make use of our proposed architecture. The network offers greater protection of each network layer as opposed to the traditional network in the proposed architecture. Lastly, we analyze the efficiency of the proposed architecture with different network parameters (throughput, RTT, and Time sequence) for smart cities. GUB JOURNAL OF SCIENCE AND ENGINEERING, Vol 7, Dec 2020 P 27-35


2012 ◽  
Vol 198-199 ◽  
pp. 1755-1760 ◽  
Author(s):  
Guo Ping Zhou ◽  
Ya Nan Chen

Applying the Internet of Things (IOT) into ecological environmental monitoring is the goal of this paper. There are several advantages of the Internet of Things (IOT) applying in ecological environment monitoring. A hierarchical monitoring system is presented, including system architecture, hardware/software design, information flow and software implementation. In the end, using carbon dioxide gas in the atmosphere for experimental purposes, in data collection and analysis. Experiments showed that this system is capable of monitoring ecologica environment, which orientate the future research of forest ecosystem.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 963
Author(s):  
Caroline Höschle ◽  
Hannah C. Cubaynes ◽  
Penny J. Clarke ◽  
Grant Humphries ◽  
Alex Borowicz

The emergence of very high-resolution (VHR) satellite imagery (less than 1 m spatial resolution) is creating new opportunities within the fields of ecology and conservation biology. The advancement of sub-meter resolution imagery has provided greater confidence in the detection and identification of features on the ground, broadening the realm of possible research questions. To date, VHR imagery studies have largely focused on terrestrial environments; however, there has been incremental progress in the last two decades for using this technology to detect cetaceans. With advances in computational power and sensor resolution, the feasibility of broad-scale VHR ocean surveys using VHR satellite imagery with automated detection and classification processes has increased. Initial attempts at automated surveys are showing promising results, but further development is necessary to ensure reliability. Here we discuss the future directions in which VHR satellite imagery might be used to address urgent questions in whale conservation. We highlight the current challenges to automated detection and to extending the use of this technology to all oceans and various whale species. To achieve basin-scale marine surveys, currently not feasible with any traditional surveying methods (including boat-based and aerial surveys), future research requires a collaborative effort between biology, computation science, and engineering to overcome the present challenges to this platform’s use.


This paper presents the design of 2*1 and 4*1 RFID reader microstrip array antenna at 2.4GHz for the Internet of things (IoT) networks which are Zigbee, Bluetooth and WIFI. The proposed antenna is composed of identical circular shapes radiating patches printed in FR4 substrate. The dielectric constant εr and substrate thickness h are 4.4 and 1.6mm, respectively. The 2*1 and 4*1 array antennas present a gain improvement of 27.3% and 61.9%, respectively. The single,2*1 and 4*1 array antennas were performed with CADFEKO.


Author(s):  
Wendy W. Fok ◽  

Minerva Tantoco was named New York City’s first chief technology officer last year, charged with developing a coordinated citywide strategy on technology and innovation. We’re likely to see more of that as cities around the country, and around the world, consider how best to use innovation and technology to operate as “smart cities.”The work has major implications for energy use and sustainability, as cities take advantage of available, real-time data – from ‘smart’ phones, computers, traffic monitoring, and even weather patterns — to shift the way in which heating and cooling systems, landscaping, flow of people through cities, and other pieces of urban life are controlled. But harnessing Open Innovation and the Internet of Things can promote sustainability on a much broader and deeper scale. The question is, how do you use all the available data to create a more environmentally sound future? The term “Internet of Things” was coined in 1999 by Kevin Ashton, who at the time was a brand manager trying to find a better way to track inventory. His idea? Put a microchip on the packaging to let stores know what was on the shelves.


2022 ◽  
Vol 54 (7) ◽  
pp. 1-34
Author(s):  
Sophie Dramé-Maigné ◽  
Maryline Laurent ◽  
Laurent Castillo ◽  
Hervé Ganem

The Internet of Things is taking hold in our everyday life. Regrettably, the security of IoT devices is often being overlooked. Among the vast array of security issues plaguing the emerging IoT, we decide to focus on access control, as privacy, trust, and other security properties cannot be achieved without controlled access. This article classifies IoT access control solutions from the literature according to their architecture (e.g., centralized, hierarchical, federated, distributed) and examines the suitability of each one for access control purposes. Our analysis concludes that important properties such as auditability and revocation are missing from many proposals while hierarchical and federated architectures are neglected by the community. Finally, we provide an architecture-based taxonomy and future research directions: a focus on hybrid architectures, usability, flexibility, privacy, and revocation schemes in serverless authorization.


Sign in / Sign up

Export Citation Format

Share Document