scholarly journals Changes in Body Composition Are Associated with Metabolic Changes and the Risk of Metabolic Syndrome

2021 ◽  
Vol 10 (4) ◽  
pp. 745
Author(s):  
Yun Hwan Oh ◽  
Seulggie Choi ◽  
Gyeongsil Lee ◽  
Joung Sik Son ◽  
Kyae Hyung Kim ◽  
...  

In a cohort of 190,599 participants from The National Health Insurance Service-National Health Screening (NHIS-HEALS) study, we investigated the association of changes in the predicted body composition and metabolic profiles with the risk of metabolic syndrome (MetS) in the general population, which was hitherto incompletely elucidated. At baseline and follow-up examinations, the body composition, including lean body mass (LBM), body fat mass (BFM), and appendicular skeletal mass (ASM), were estimated using a prediction equation, and the risk of MetS was analyzed according to relative body composition changes. An increase in relative LBM and ASM decreased the risk of MetS in men and women (adjusted odds ratio (aOR), 0.78 and 0.80; 95% confidence interval (CI), 0.77–0.79 and 0.79–0.81, respectively; all p < 0.001). As relative LBM and ASM increased, the risk of MetS was more significantly reduced in the group with higher baseline BMI and body fat mass index (BFMI)(all p-trend < 0.001). In men, when the relative LBM increased (aOR, 0.68; 95% CI, 0.63–0.73), the risk of MetS was low despite increased BMI. Thus, our findings suggested that an increase in the relative LBM and ASM reduced the risk of MetS, whereas an increase in the relative BFMI increased the risk of MetS; this result was consistent in men despite an increase in BMI.

2020 ◽  
pp. 1-9 ◽  
Author(s):  
Irene A. Garcia-Yu ◽  
Luis Garcia-Ortiz ◽  
Manuel A. Gomez-Marcos ◽  
Emiliano Rodriguez-Sanchez ◽  
Cristina Lugones-Sanchez ◽  
...  

Abstract During menopause, women undergo a series of physiological changes that include a redistribution of fat tissue. This study was designed to investigate the effect of adding 10 g of cocoa-rich chocolate to the habitual diet of postmenopausal women daily on body composition. We conducted a 6-month, two-arm randomised, controlled trial. Postmenopausal women (57·2 (sd 3·6) years, n 132) were recruited in primary care clinics. Participants in the control group (CG) did not receive any intervention. Those of the intervention group (IG) received 10 g daily of 99 % cocoa chocolate in addition to their habitual diet for 6 months. This quantity comprises 247 kJ (59 kcal) and 65·4 mg of polyphenols. The primary outcomes were the between-group differences in body composition variables, measured by impendancemetry at the end of the study. The main effect of the intervention showed a favourable reduction in the IG with respect to the CG in body fat mass (–0·63 kg (95 % CI –1·15, –0·11), P = 0·019; Cohen’s d = –0·450) and body fat percentage (–0·79 % (95 % CI –1·31, –0·26), P = 0·004; Cohen’s d = –0·539). A non-significant decrease was also observed in BMI (–0·20 kg/m2 (95 % CI –0·44, 0·03), P = 0·092; Cohen’s d = –0·345). Both the body fat mass and the body fat percentage showed a decrease in the IG for the three body segments analysed (trunk, arms and legs). Daily addition of 10 g of cocoa-rich chocolate to the habitual diet of postmenopausal women reduces their body fat mass and body fat percentage without modifying their weight.


2018 ◽  
Vol 71 (5-6) ◽  
pp. 157-161
Author(s):  
Aleksandra Rakovac ◽  
Lana Andric ◽  
Vedrana Karan ◽  
Maja Bogdan ◽  
Danijel Slavic ◽  
...  

Introduction. There is a great interest to identify factors that influence the value of maximum oxygen consumption. The goal of this research was to assess the body composition, pulmonary parameters, and maximum oxygen consumption in different types of sports and in non-athletes. Material and Methods. The research included 149 male participants: aerobic athletes (n = 55), anaerobic athletes (n = 53) and non-athletes (n = 41). The participants were tested at the Department of Physiology, Faculty of Medicine of the University of Novi Sad. Anthropometric parameters and body mass index were measured. Also, the body fat mass was determined by bioelectrical impedance. pulmonary parameters by spirometry and maximum oxygen consumption on a bicycle ergometer. Results. The body mass index values in non-athletes were the highest and significantly different compared to the aerobic athletes (p = 0.01). Also, non-athletes had significantly higher values of body fat mass compared to athletes (p < 0.001). The pulmonary parameters were not significantly different between the tested groups (p > 0.05). However. the values of maximum oxygen consumption were significantly different between all three tested groups (aerobic athletes 53.75 ? 7.82 ml/kg/min; anaerobic athletes 48.04 ? 6.79 ml/kg/min; non-athletes 41.95 ? 8.53 ml/kg/min) (p < 0.001). A low degree of correlation was found between maximum oxygen consumption and pulmonary parameters in the tested groups. Conclusion. Body composition has an impact on the pulmonary parameters. The values of maximum oxygen consumption depend on the type of sport and training. and the highest values are in aerobic sports. There is a low degree of correlation between maximum oxygen consumption and pulmonary parameters in the tested groups.


2021 ◽  
Vol 12 ◽  
Author(s):  
Grégory Lentin ◽  
Sean Cumming ◽  
Julien Piscione ◽  
Patrick Pezery ◽  
Moez Bouchouicha ◽  
...  

ObjectivesConcerns regarding marked differences in the weights and body composition of young rugby players competing within the same age groups have led to the suggestion of alternative models for grouping young players. The aims of this study were (1) to compare variance in the body size and body composition of schoolboy rugby players (9 to 14 years), across weight- and age-grading models, and (2) to identify morphotypes for the weight model using Hattori’s body composition chart.Materials and MethodsSkinfold thickness measurements were used to assess body fat mass (BF), fat-free mass (FFM), body fat mass index (BFMI), and fat-free mass index (FFMI). Standardized measure of height and weight were taken for all participants. Data were grouped according to the age categories of the French Rugby Federation (U11: Under 11 years, U13: Under 13 years, and U15: Under 15 years), and to the weight categories (W30–44.9; W45–59.9; and W60–79.9) carried out from 25th and 75th weight percentile in each age category. Body mass index status (NW normal-weight versus OW/OB overweight/obese) was considered. Extreme morphotypes are characterized from BFMI and FFMI in the weight-grading model on Hattori’s body composition chart.ResultsThe dispersion of anthropometric characteristics decreased significantly for the weight model, except for height in all groups and BFMI for U13. Among NW, 3, 1.8, and 0% upgraded; 18.2, 68.7, and 45.5% downgraded; among OW, 50, 21.5, and 12.5%; and among OB, 91.3, 83.3, and 74.6% upgraded, respectively, in U11, U13, U15. FFMI/BFMI were correlated in U11 (r = 0.80, p &lt; 0.001), U13 (r = 0.66, p &lt; 0.001), and U15 (r = 0.77, p &lt; 0.001). There was no significant correlation in W45–59.9 and low correlations in W30–44.9 (r = 0.25, p &lt; 0.001) and W60–79.9 (r = 0.29, p &lt; 0.001). Significant grading difference between the centroids (p &lt; 0.05) and the distribution deviates from centroids of BFMI and FFMI (p &lt; 0.0001) were noted between the two models. Thirteen players were located in adipo-slender, twenty-three in adipo-solid, twenty-two in lean-slender, and two located in the lean-solid morphotype in weight model.ConclusionA weight-grading model should be considered to limit mismatches in anthropometric variables. However, variations of body composition also persisted for this model. Hattori’s body composition chart allowed more detailed examination of morphological atypicalities among schoolboy rugby players.


2017 ◽  
Vol 10 (18) ◽  
pp. 21-27
Author(s):  
Hans-Eric Reitmayer

Abstract Volleyball has become a sport of the giants. Under these circumstances it is desirable that players of a very large stature also possess a corresponding vertical jump. The aim of the paper was to identify the values of some parameters that we considered crucial in limiting or maximizing the in-game performance of the athletes in the study. Our intention was to verify if the body composition indicators change significantly at different stages of a competition season and if the characteristics of the jump, crucial in performing the actions through which the points arescored, are relevant in determining the level of physical conditioning. Twelve players (n=12) were selected from the second league Romanian male volleyball team CSU UVT. The subjects were tested for body composition and their spike jump and counter movement jump was measured on three separate occasions, each corresponding to a different stage of training. Study results highlighted a significant increase of 1.15kg (p=0.028) in weight at the intermediate testing compared to the initial values. There were no differences in muscle mass between the initial and the intermediate testing (p=0.88). The results have shown a significant increase of the average skeletal muscle mass in the final test by 0.77 kg over the intermediate test (p=0.012) and 0.81kg over the initial test (p=0.039).We recorded a considerable increase of body fat mass between initial and intermediate testing (p=0.0073) and there was an average decrease of 1.76 kg (p=0.0285) of body fat mass between intermediate and final testing. We have seen a significant increase in the height of the spike jump at the final test compared to the intermediate testing (p<0.0001) respectively the initial testing (p<0.0001).The counter movement jump recorded a significant decrease in the intermediate test 37.58 cm, compared to the initial test 40.57 cm (p=0.014).. Final measurements of the counter movement jump height increase in relation to intermediate testing (p=0.037). Measurements also indicate a direct correlation between the height and power developed during the jump in all the three tests: initial (r=0.76), intermediate (r=0.68) and final (r=0.84).


Sports ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 85 ◽  
Author(s):  
Jennifer Fields ◽  
Justin Merrigan ◽  
Jason White ◽  
Margaret Jones

The purpose of this study was to assess the body composition of male and female basketball athletes (n = 323) across season, year, and sport-position using air displacement plethysmography. An independent sample t-test assessed sport-position differences. An analysis of variance was used to assess within-subjects across season (pre-season, in-season, and off-season), and academic year (freshman, sophomore, and junior). For both men and women basketball (MBB, WBB) athletes, guards had the lowest body fat, fat mass, fat free mass, and body mass. No seasonal differences were observed in MBB, but following in-season play for WBB, a reduction of (p = 0.03) in fat free mass (FFM) was observed. Across years, MBB showed an increase in FFM from freshman to sophomore year, yet remained unchanged through junior year. For WBB across years, no differences occurred for body mass (BM), body fat (BF%), and fat mass (FM), yet FFM increased from sophomore to junior year (p = 0.009). Sport-position differences exist in MBB and WBB: Guards were found to be smaller and leaner than forwards. Due to the importance of body composition (BC) on athletic performance, along with seasonal and longitudinal shifts in BC, strength and conditioning practitioners should periodically assess athletes BC to ensure preservation of FFM. Training and nutrition programming can then be adjusted in response to changes in BC.


2013 ◽  
Vol 7 ◽  
pp. e93
Author(s):  
Julie A. Pasco ◽  
Haslinda Gould ◽  
Kara L. Holloway ◽  
Amelia G. Dobbins ◽  
Mark A. Kotowicz ◽  
...  

AGE ◽  
2015 ◽  
Vol 37 (5) ◽  
Author(s):  
Rogério Antonio Laurato Sertié ◽  
Rennan de Oliveira Caminhotto ◽  
Sandra Andreotti ◽  
Amanda Baron Campaña ◽  
André Ricardo Gomes de Proença ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document