scholarly journals The Microbiota-Gut-Brain Axis as a Key to Neuropsychiatric Disorders: A Mini Review

2021 ◽  
Vol 10 (20) ◽  
pp. 4640
Author(s):  
Katarzyna Stopińska ◽  
Maria Radziwoń-Zaleska ◽  
Izabela Domitrz

The central nervous system (CNS) is closely related to the gastrointestinal tract, mainly through regulating its function and homeostasis. Simultaneously, the gut flora affects the CNS and plays an essential role in the pathogenesis of neurologic and neuropsychological disorders such as Parkinson’s and Alzheimer’s disease, multiple sclerosis, amyotrophic lateral sclerosis or autism spectrum disorder. The population of gut microorganisms contains more than one billion bacteria. The most common are six phyla: Proteobacteria, Actinomyces, Verucomicrobia, Fusobacteria, and dominant Bacteroides with Firmicutes. The microbiota–gut–brain axis is a bidirectional nervous, endocrine, and immune communication between these two organs. They are connected through a variety of pathways, including the vagus nerve, the immune system, microbial metabolites such as short-chain fatty acids (SCFAs), the enteric nervous system, and hormones. Age, diet, antibiotics influence the balance of gut microorganisms and probably lead to the development of neurodegenerative disorders. In this article, a review is presented and discussed, with a specific focus on the changes of gut microbiota, gut–brain axis, related disorders, and the factors that influence gut imbalance.

2020 ◽  
Vol 26 (7) ◽  
pp. 730-742
Author(s):  
Surendra Gulla ◽  
Dakshayani Lomada ◽  
Anusha Lade ◽  
Reddanna Pallu ◽  
Madhava C. Reddy

: Multiple sclerosis (MS) is an autoimmune demyelinating disorder with chronic inflammation in the central nervous system, manifested by both physical and cognitive disability. Neuroinflammation and neurodegeneration are the phenomena that appear in the central nervous system associated with various neurodegenerative disorders, including MS, Alzheimer’s diseases, amyotrophic lateral sclerosis and Parkinson’s disease. Prostaglandins are one of the major mediators of inflammation that exhibit an important function in enhancing neuroinflammatory and neurodegenerative processes. These mediators would help understand the pathophysiology of MS as the combination of antagonists or agonists of prostaglandins receptors could be beneficial during the treatment of MS. The present review focuses on the role played by different prostaglandins and the enzymes which produced them in the etiopathogenesis of MS.


2020 ◽  
Author(s):  
Atefeh Ghahremanloo ◽  
Fariba Mohammadi ◽  
Seyed Isaac Hashemy

Abstract- Tachykinins (TKs) are a family of neuropeptides widely distributed in the human body, especially in the nervous system. TKs have exhibited both neuroprotective and neurodegenerative properties in the central nervous system (CNS) and spinal cord. Also, several studies have shown that substance P (SP), as a pioneering neuropeptide of the TK family, is engaged in the pathogenesis of neurodegenerative disorders (NDs), such as Alzheimer disease, Multiple Sclerosis, Parkinson’s disease, Huntington’s disease, and Amyotrophic lateral sclerosis. However, a huge body of information available about the level of SP in NDs demonstrates that SP and its receptors might be prognostic or diagnostic factors for NDs. The present review article summarizes the roles of TKs in common neurodegenerative disorders.


Author(s):  
Konstantin Gulyabin

Mills' syndrome is a rare neurological disorder. Its nosological nature is currently not completely determined. Nevertheless, Mills' syndrome is considered to be a rare variant of the degenerative pathology of the central nervous system – a variant of focal cortical atrophy. The true prevalence of this pathology is unknown, since this condition is more often of a syndrome type, observed in the clinical picture of a number of neurological diseases (primary lateral sclerosis, frontotemporal dementia, etc.) and is less common in isolated form.


2020 ◽  
Vol 20 (13) ◽  
pp. 1142-1153 ◽  
Author(s):  
Sreyashi Chandra ◽  
Md. Tanjim Alam ◽  
Jhilik Dey ◽  
Baby C. Pulikkaparambil Sasidharan ◽  
Upasana Ray ◽  
...  

Background: The central nervous system (CNS) known to regulate the physiological conditions of human body, also itself gets dynamically regulated by both the physiological as well as pathological conditions of the body. These conditions get changed quite often, and often involve changes introduced into the gut microbiota which, as studies are revealing, directly modulate the CNS via a crosstalk. This cross-talk between the gut microbiota and CNS, i.e., the gut-brain axis (GBA), plays a major role in the pathogenesis of many neurodegenerative disorders such as Parkinson’s disease (PD), Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS) and Huntington’s disease (HD). Objective: We aim to discuss how gut microbiota, through GBA, regulate neurodegenerative disorders such as PD, AD, ALS, MS and HD. Methods: In this review, we have discussed the present understanding of the role played by the gut microbiota in neurodegenerative disorders and emphasized the probable therapeutic approaches being explored to treat them. Results: In the first part, we introduce the GBA and its relevance, followed by the changes occurring in the GBA during neurodegenerative disorders and then further discuss its role in the pathogenesis of these diseases. Finally, we discuss its applications in possible therapeutics of these diseases and the current research improvements being made to better investigate this interaction. Conclusion: We concluded that alterations in the intestinal microbiota modulate various activities that could potentially lead to CNS disorders through interactions via the GBA.


2018 ◽  
Vol 47 (1) ◽  
pp. 89-100 ◽  
Author(s):  
Sameera Iqbal ◽  
Mina Ghanimi Fard ◽  
Arun Everest-Dass ◽  
Nicolle H. Packer ◽  
Lindsay M. Parker

Abstract Glycosylation, the enzymatic process by which glycans are attached to proteins and lipids, is the most abundant and functionally important type of post-translational modification associated with brain development, neurodegenerative disorders, psychopathologies and brain cancers. Glycan structures are diverse and complex; however, they have been detected and targeted in the central nervous system (CNS) by various immunohistochemical detection methods using glycan-binding proteins such as anti-glycan antibodies or lectins and/or characterized with analytical techniques such as chromatography and mass spectrometry. The glycan structures on glycoproteins and glycolipids expressed in neural stem cells play key roles in neural development, biological processes and CNS maintenance, such as cell adhesion, signal transduction, molecular trafficking and differentiation. This brief review will highlight some of the important findings on differential glycan expression across stages of CNS cell differentiation and in pathological disorders and diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis, schizophrenia and brain cancer.


2016 ◽  
Vol 138 (5) ◽  
pp. 653-693 ◽  
Author(s):  
Katrin I. Andreasson ◽  
Adam D. Bachstetter ◽  
Marco Colonna ◽  
Florent Ginhoux ◽  
Clive Holmes ◽  
...  

Metallomics ◽  
2016 ◽  
Vol 8 (9) ◽  
pp. 1002-1011 ◽  
Author(s):  
J. B. Hilton ◽  
A. R. White ◽  
P. J. Crouch

It is unclear why ubiquitous expression of mutant SOD1 selectively affects the central nervous system in amyotrophic lateral sclerosis. Here we hypothesise that the central nervous system is primarily affected because, unlike other tissues, it has relatively limited capacity to satiate an increased requirement for Cu.


Sign in / Sign up

Export Citation Format

Share Document