scholarly journals Gold Nanoparticles: Biosynthesis and Potential of Biomedical Application

2021 ◽  
Vol 12 (4) ◽  
pp. 70
Author(s):  
Ekaterina O. Mikhailova

Gold nanoparticles (AuNPs) are extremely promising objects for solving a wide range of biomedical problems. The gold nanoparticles production by biological method (“green synthesis”) is eco-friendly and allows minimization of the amount of harmful chemical and toxic byproducts. This review is devoted to the AuNPs biosynthesis peculiarities using various living organisms (bacteria, fungi, algae, and plants). The participation of various biomolecules in the AuNPs synthesis and the influence of size, shapes, and capping agents on the functionalities are described. The proposed action mechanisms on target cells are highlighted. The biological activities of “green” AuNPs (antimicrobial, anticancer, antiviral, etc.) and the possibilities of their further biomedical application are also discussed.

2020 ◽  
Vol 11 (4) ◽  
pp. 84
Author(s):  
Ekaterina O. Mikhailova

This review is devoted to the medical application of silver nanoparticles produced as a result of “green” synthesis using various living organisms (bacteria, fungi, plants). The proposed mechanisms of AgNPs synthesis and the action mechanisms on target cells are highlighted.


2019 ◽  
Vol 12 (8) ◽  
pp. 2310-2319 ◽  
Author(s):  
Nazar Ul Islam ◽  
Kamran Jalil ◽  
Muhammad Shahid ◽  
Naveed Muhammad ◽  
Abdur Rauf

Química Nova ◽  
2020 ◽  
Author(s):  
Daiana Franco ◽  
Thiago Pereira ◽  
Felipe Vitorio ◽  
Nathalia Nadur ◽  
Renata Lacerda ◽  
...  

Coumarins are natural products characterized as 2H-chromen-2-one, according to IUPAC nomenclature, largely distributed in plants, as well as, in species of fungi and bacteria. Nowadays, many synthetic procedures allow the discovery of coumarins with expanded chemical space. The ability to exert non-covalent interactions with many enzymes an receptors in living organisms lead the coumarins to exhibit a wide range of biological activities and applications. Then, this manuscript provides an overview of the use of coumarin compounds in medicinal chemistry in treating many diseases. Important examples of the last years have been selected concerning the activities of coumarins as anticoagulant, anticancer, antioxidant, antiviral, antidiabetics, anti-inflammatory, antibacterial, antifungal, and anti-neurodegenerative agents. Thus, this work aims at contributing to the development of new rational research projects searching for new treatments and bioactive compounds for many pathologies using coumarin derivatives.


2021 ◽  
Vol 4 (2) ◽  
pp. 47-53
Author(s):  
N. Y. Monka ◽  
◽  
N. E. Stadnytska ◽  
I. R. Buchkevych ◽  
K. O. Kaplia ◽  
...  

Benzoquinone and its reduced form hydroquinone belong to phenolic compounds and are found in living organisms in free form or in glycosides. They are active substances of some medicinal plants and have a pharmacological effect on the human body. Accordingly, their derivatives are important objects for chemical synthesis and development of new drugs. This article presents the findings of the structural design of substances with benzoquinone or hydroquinone fragment and sulfur-containing compound. By use of appropriate on-line programs a predictive screening of the biological activity and cytotoxicity of thiosulfonate derivatives of benzoquinone and hydroquinone has been conducted. It has been found that they have immense methodological potential to be synthesized by substances with a wide range of biological activities and a high value of probable activity, which substantiates the feasibility of conducting experimental studies on their biological activity, particularly anticancer.


Author(s):  
Kangze Liu ◽  
Zhonglei He ◽  
Hugh J. Byrne ◽  
James Curtin ◽  
Furong Tian

The possibility of releasing gold nanoparticles (GNP) into the environment has been rapidly increasing with the wide spread and flourishing application of gold nanoparticles (GNPs) in a wide range of areas. Consequently, environmental effects of GNP, especially toxicities to living organisms have drawn great attention. However, their toxicological characteristics still remain unclear. Fungi, as the decomposers of the ecosystem, interact directly with the environment and critically control the overall health of the biosphere. Thus, their sensitivity to GNP toxicity is particularly important. The aim of this study was to evaluate the role of shape and size of GNPs on their toxicities to fungi, which could help reveal the ecotoxicity of GNPs. Aspergillus niger, Mucor hiemalis and Penicillium chrysogenum were chosen for toxicity assessment, and circular and star/flower-shaped GNPs sized from 0.7 nm to large aggregates of 400 nm have been synthesised. After mixed with GNPs and reacting agents of GNPs accordingly and incubated for 48 hours, the relative survival rates of each kind of fungus was calculated and compared. The results indicated that with similar sizes, star/flower-shaped GNPs are more toxic to fungi than circular-shaped GNPs; the toxicity of star/flower-shaped GNPs increases with smaller sizes. The results also showed that different species of fungus reacts differently to same GNPs, and Penicillium chrysogenum was relatively more sensitive under the exposure to GNPs.


Bioimpacts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 217-226
Author(s):  
Maryam Asariha ◽  
Azam Chahardoli ◽  
Farshad Qalekhani ◽  
Mahnaz Ghowsi ◽  
Mehdi Fouladi ◽  
...  

introduction: The application of gold nanoparticles (GNPs) in medicine is expanding as an effective therapeutic and diagnostic compound. Different polysaccharides with high biocompatibility and hydrophilic properties have been used for synthesis and capping of GNPs. Chondroitin sulfate (CHS) as a polysaccharide possesses a wide range of biological functions e.g. anti-oxidant, anti-inflammation, anti-coagulation, anti-atherosclerosis, anti-thrombosis with insignificant immunogenicity and has not been used for the green synthesis of GNPs. Methods: GNPs were synthesized using CHS, and their physicochemical properties were evaluated. The antibacterial activity of CHS-GNPs was estimated against both gram-positive and gram-negative bacteria. The cytotoxicity of CHS and CHS-GNPs was obtained by MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) test, and the electrocatalytic activity of CHS-GNPs was investigated. The blood compatibility was evaluated by the in vitro hemolysis assay. Results: The absorption band at 527 nm reveals the reduction of Au3+ into GNPs. The transmission electron microscopy (TEM) image displays the spherical shape of GNPs in the range of 5.8–31.4 nm. The CHS and CHS-GNPs at 300 µg/mL revealed a maximum DPPH (1, 1-diphenyl-2-picrylhydrazyl) scavenging activity of 73% and 65%, respectively. CHS-GNPs showed antibacterial activity against Bacillus subtilis, while CHS has no antibacterial activity. CHS-GNPs exhibited a cytotoxicity effect against MDA-MB-468 and βTC3 cancer cell lines, and the electrochemical study indicated a significant increase in electrocatalytic properties of CHS-GNPs coated electrode compared by the bare electrode. The hemolysis test proved the blood compatibility of CHS-GNPs. Conclusion: The results indicate the advantages of using CHS to produce blood-compatible GNPs with antioxidant, cytotoxic, and electrochemical properties.


2018 ◽  
Vol 6 (11) ◽  
pp. 1720
Author(s):  
Shiva Shirotiya ◽  
Bhanumati Singh ◽  
Chauhan V.S.

Nanobiotechnology is a growing field due to its wide variety of applications in many fields of science and technology. Use of Nanoparticles in biomedical and biotechnology is due to its great surface area, improved permeability, retention effect etc. Green synthesized gold nanoparticles are very much useful for different applications in nanobiotechnology because of its properties and ecofriendly nature. Because of its chemical and physical properties, Colloidal gold has different uses in biotechnology. There are many ways to synthesize gold nanoparticles but green synthesis method is more appropriate as compared to others. This review addressed basically on the different methods of synthesis of gold nanoparticles but is also focused on its green synthesis, different shapes, sizes and various applications in each and every field of life. To be concise, AuNPs are potent tool in targeting drug delivery and biomedical application.


Author(s):  
Abderrhmane Bouafia ◽  
Salah Eddine Laouini

: In this review, we examine ‘greener’ routes to nanoparticles of iron oxides, in the recent years; nanotechnology has emerged as a state-of-the-art and cutting edge technology with multifarious applications in a wide array of fields. Natural products or extracted from natural products. Such as different plant extracts, have been used as reductants, and as capping agents during synthesis. A very easy, efficient and environment-friendly protocol was developed to synthesize green nanoparticles (NPs) with an aqueous extract of various plant, phenolic compounds extracted from plants play a major role as a non-toxic reducing and capping agents for nanoparticle. Nanoparticles and their compounds are known to exert a strong inhibitory and microbial activity on bacteria, viruses, and fungi. In today's world, because of the epidemic of infectious diseases caused by different pathogenic bacteria and the development of antibiotic resistance. Green synthesis, characterization, and application of nanoparticles (NPs) are becoming an important challenge in nanotechnology. Green synthesis of nanoparticles is made in large quantities worldwide for a wide range of applications. This technique is very safe and environmentally friendly.


2019 ◽  
Vol 12 (8) ◽  
pp. 2914-2925 ◽  
Author(s):  
Nazar Ul Islam ◽  
Kamran Jalil ◽  
Muhammad Shahid ◽  
Abdur Rauf ◽  
Naveed Muhammad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document