scholarly journals Unveiling the Secrets of Escher’s Lithographs

2020 ◽  
Vol 6 (2) ◽  
pp. 5
Author(s):  
Primo Coltelli ◽  
Laura Barsanti ◽  
Paolo Gualtieri

An impossible structure gives us the impression of looking at a three-dimensional object, even though this object cannot exist, since it possesses parts that are spatially non-connectable, and are characterized by misleading geometrical properties not instantly evident. Therefore, impossible artworks appeal to our intellect and challenge our perceptive capacities. We analyzed lithographs containing impossible structures (e.g., the Necker cube), created by the famous Dutch painter Maurits Cornelis Escher (1898–1972), and used one of them (The Belvedere, 1958) to unveil the artist’s hidden secrets by means of a discrete model of the human retina based on a non-uniform distribution of receptive fields. We demonstrated that the ability of Escher in composing his lithographs by connecting spatial coherent details into an impossible whole lies in drawing these incoherent fragments just outside the zone in which 3D coherence can be perceived during a single fixation pause. The main aspects of our paper from the point of view of image processing and image understanding are the following: (1) the peculiar and original digital filter to process the image, which simulates the human vision process, by producing a space-variant sampling of the image; (2) the software for the filter, which is homemade and created for our purposes. The filtered images resulting from the processing are used to understand impossible figures. As an example, we demonstrate how the impossible figures hidden in Escher’s paintings can be understood.

2021 ◽  
Vol 2 (5) ◽  
Author(s):  
Jesús M. González-González

Perspective” is the art of representing objects in such a way that they are visualized from the observer’s point of view. Using this technique, a three-dimensional (3D) world is projected onto a two-dimensional (2D) Surface. “Conical perspective” is the one that interests us in hyperbolic medicine since it is the one that most closely approximates the reality we see. We call “hyperbolic medicine” (abbreviated “Medipérbola”) to the study of hyperbolic curves that occur in the physiology of a living being, especially in humans, about other hyperbolic curves that may be in nature, such as electromagnetic fields, expansion-contraction systems in motion, circadian rhythms, and space-time relativity. We think that when we observe an object, the conical perspective of that image is not parallel lines that converge at a point, but hyperbolic curves of space-time, and the hyperbolic curves that occur in human physiology would be related to them. The relationships between conic perspective, hyperbolic curves of space-time, and hyperbolic curves of human physiology have been studied. Conclusions: 1. Conic perspective represents images that travel at the speed of light to the eye of the observer, following hyperbolic curves of space-time. 2. Human vision is hyperbolic because the space in which we live is deformed by “hyperbolic curves”, which exist in any longitude and latitude of the earth’s geography. 3. Human physiology can be conditioned by these hyperbolic curves, to adapt to this hyperbolic deformation of the space in which we live.


Author(s):  
Marcin Lefik ◽  
Krzysztof Komeza ◽  
Ewa Napieralska-Juszczak ◽  
Daniel Roger ◽  
Piotr Andrzej Napieralski

Purpose The purpose of this paper is to present a comparison between reluctance synchronous machine-enabling work at high internal temperature (HT° machine) with laminated and solid rotor. Design/methodology/approach To obtain heat sources for the thermal model, calculations of the electromagnetic field were made using the Opera 3D program including effect of rotation and the resulting eddy current losses. To analyse the thermal phenomenon, the 3D coupled thermal-fluid (CFD) model is used. Findings The presented results show clearly that laminated construction is much better from a point of view of efficiency and temperature. However, solid construction can be interesting for high speed machines due to their mechanical robustness. Research limitations/implications The main problem, despite the use of parallel calculations, is the long calculation time. Practical implications The obtained simulation and experimental results show the possibility of building a machine operating at a much higher ambient temperature than it was previously produced for example in the vicinity of the aircraft turbines. Originality/value The paper presents the application of fully three-dimensional coupled electromagnetic and thermal analysis of new machine constructions designed for elevated temperature.


2001 ◽  
Vol 10 (3) ◽  
pp. 312-330 ◽  
Author(s):  
Bernard Harper ◽  
Richard Latto

Stereo scene capture and generation is an important facet of presence research in that stereoscopic images have been linked to naturalness as a component of reported presence. Three-dimensional images can be captured and presented in many ways, but it is rare that the most simple and “natural” method is used: full orthostereoscopic image capture and projection. This technique mimics as closely as possible the geometry of the human visual system and uses convergent axis stereography with the cameras separated by the human interocular distance. It simulates human viewing angles, magnification, and convergences so that the point of zero disparity in the captured scene is reproduced without disparity in the display. In a series of experiments, we have used this technique to investigate body image distortion in photographic images. Three psychophysical experiments compared size, weight, or shape estimations (perceived waist-hip ratio) in 2-D and 3-D images for the human form and real or virtual abstract shapes. In all cases, there was a relative slimming effect of binocular disparity. A well-known photographic distortion is the perspective flattening effect of telephoto lenses. A fourth psychophysical experiment using photographic portraits taken at different distances found a fattening effect with telephoto lenses and a slimming effect with wide-angle lenses. We conclude that, where possible, photographic inputs to the visual system should allow it to generate the cyclopean point of view by which we normally see the world. This is best achieved by viewing images made with full orthostereoscopic capture and display geometry. The technique can result in more-accurate estimations of object shape or size and control of ocular suppression. These are assets that have particular utility in the generation of realistic virtual environments.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Yuan-Yu Tsai ◽  
Tsung-Chieh Cheng ◽  
Yao-Hsien Huang

This study proposes a low-complexity region-based authentication algorithm for three-dimensional (3D) polygonal models, based on local geometrical property evaluation. A vertex traversal scheme with a secret key is adopted to classify each vertex into one of two categories: embeddable vertices and reference vertices. An embeddable vertex is one with an authentication code embedded. The algorithm then uses reference vertices to calculate local geometrical properties for the corresponding embeddable vertices. For each embeddable vertex, we feed the number of reference vertices and local properties into a hash function to generate the authentication code. The embeddable vertex is then embedded with the authentication code, which is based on a simple message-digit substitution scheme. The proposed algorithm is of low complexity and distortion-controllable and possesses a higher and more adaptive embedding capacity and a higher embedding rate than most existing region-based authentication algorithms for 3D polygonal models. The experimental results demonstrate the feasibility of the proposed algorithm.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4005 ◽  
Author(s):  
Angelats Lobo ◽  
Ginestra

The classic cell culture involves the use of support in two dimensions, such as a well plate or a Petri dish, that allows the culture of different types of cells. However, this technique does not mimic the natural microenvironment where the cells are exposed to. To solve that, three-dimensional bioprinting techniques were implemented, which involves the use of biopolymers and/or synthetic materials and cells. Because of a lack of information between data sources, the objective of this review paper is, to sum up, all the available information on the topic of bioprinting and to help researchers with the problematics with 3D bioprinters, such as the 3D-Bioplotter™. The 3D-Bioplotter™ has been used in the pre-clinical field since 2000 and could allow the printing of more than one material at the same time, and therefore to increase the complexity of the 3D structure manufactured. It is also very precise with maximum flexibility and a user-friendly and stable software that allows the optimization of the bioprinting process on the technological point of view. Different applications have resulted from the research on this field, mainly focused on regenerative medicine, but the lack of information and/or the possible misunderstandings between papers makes the reproducibility of the tests difficult. Nowadays, the 3D Bioprinting is evolving into another technology called 4D Bioprinting, which promises to be the next step in the bioprinting field and might promote great applications in the future.


Author(s):  
A Meghdari ◽  
R Davoodi ◽  
F Mesbah

This paper presents an engineering analysis of shoulder dystocia (SD) in the human birth process which usually results in damaging the brachial plexus nerves and the humerus and/or clavicle bones of the baby. The goal is to study these injuries from the mechanical engineering point of view. Two separate finite element models of the neonatal neck and the clavicle bone have been simulated using eight-node three-dimensional elements and beam elements respectively. Simulated models have been analysed under suitable boundary conditions using the ‘SAP80’ finite element package. Finally, results obtained have been verified by comparing them with published clinical and experimental observations.


2006 ◽  
Vol 95 (5) ◽  
pp. 3129-3145 ◽  
Author(s):  
Steven C. Leiser ◽  
Karen A. Moxon

Cells within the trigeminal ganglion (Vg) encode all the information necessary for the rat to differentiate tactile stimuli, yet it is the least-studied component in the rodent trigeminal somatosensory system. For example, extensive anatomical and electrophysiological investigations have shown clear somatotopic organization in the higher levels of this system, including VPM thalamus and SI cortex, yet whether this conserved schemata exists in the Vg is unknown. Moreover although there is recent interest in recording from vibrissae-responsive cells in the Vg, it is surprising to note that the locations of these cells have not even been clearly demarcated. To address this, we recorded extracellularly from 350 sensory-responsive Vg neurons in 35 Long-Evans rats. First, we determined three-dimensional locations of these cells and found a finer detail of somatotopy than previously reported. Cells innervating dorsal facial features, even within the whisker region, were more dorsal than midline and ventral features. We also show more cells with caudal than rostral whisker receptive fields (RF), similar to that found in VPM and SI. Next, for each vibrissal cell we determined its response type classified as either rapidly (RA) or slowly (SA) adapting. We examined the relationship between vibrissal RF and response type and demonstrate similar proportions of RA and SA cells responding to any whisker. These results suggest that if RA and SA cells encode distinct features of stimuli, as previously suggested, then at the basic physiological level each whisker has similar abilities to encode for such features.


2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
F. Caputo ◽  
A. De Luca ◽  
A. Greco ◽  
A. Marro ◽  
A. Apicella ◽  
...  

Usually during the design of landing gear, simplified Finite Element (FE) models, based on one-dimensional finite elements (stick model), are used to investigate the in-service reaction forces involving each subcomponent. After that, the design of such subcomponent is carried out through detailed Global/Local FE analyses where, once at time, each component, modelled with three-dimensional finite elements, is assembled into a one-dimensional finite elements based FE model, representing the whole landing gear under the investigated loading conditions. Moreover, the landing gears are usually investigated also under a kinematic point of view, through the multibody (MB) methods, which allow achieving the reaction forces involving each subcomponent in a very short time. However, simplified stick (FE) and MB models introduce several approximations, providing results far from the real behaviour of the landing gear. Therefore, the first goal of this paper consists of assessing the effectiveness of such approaches against a 3D full-FE model. Three numerical models of the main landing gear of a regional airliner have been developed, according to MB, “stick,” and 3D full-FE methods, respectively. The former has been developed by means of ADAMS® software, the other two by means of NASTRAN® software. Once this assessment phase has been carried out, also the Global/Local technique has verified with regard to the results achieved by the 3D full-FE model. Finally, the dynamic behaviour of the landing gear has been investigated both numerically and experimentally. In particular, Magnaghi Aeronautica S.p.A. Company performed the experimental test, consisting of a drop test according to EASA CS 25 regulations. Concerning the 3D full-FE investigation, the analysis has been simulated by means of Ls-Dyna® software. A good level of accuracy has been achieved by all the developed numerical methods.


Author(s):  
Akram Ghanem ◽  
Thierry Lemenand ◽  
Dominique Della Valle ◽  
Hassan Peerhossaini

A numerical investigation of chaotic laminar flow and heat transfer in isothermal-wall square-channel configurations is presented. The computations, based on a finite-volume method with the SIMPLEC algorithm, are conducted in terms of Péclet numbers ranging from 7 to 7×105. The geometries, based on the split-and-recombine (SAR) principle, are first proposed for micromixing purposes, and are then optimized and scaled up to three-dimensional minichannels with 3-mm sides that are capable of handling industrial fluid manipulation processes. The aim is to assess the feasibility of this mass- and heat-transfer technique for out-of-laboratory commercial applications and to compare different configurations from a process intensification point of view. The effects of the geometry on heat transfer and flow characteristics are examined. Results show that the flux recombination phenomenon mimicking the baker’s transform in the SAR-1 and SAR-2 configurations produces chaotic structures and promotes mass transfer. This phenomenon also accounts for higher convective heat transfer exemplified by increased values of the Nusselt number compared to the chaotic continuous-flow configuration and the baseline plain square-duct geometry. Energy expenditures are explored and the overall heat transfer enhancement factor for equal pumping power is calculated. The SAR-2 configuration reveals superior heat-transfer characteristics, enhancing the global gain by up to 17-fold over the plain duct heat exchanger.


2019 ◽  
Vol 1 ◽  
pp. 1-2
Author(s):  
Hayato Nishi ◽  
Yasushi Asami

<p><strong>Abstract.</strong> Multi-dimensional scaling (MDS) is a popular method of visualizing the similarity of individuals in a dataset. When dissimilarities between individuals in a dataset are measured, MDS projects these individuals into the (typically two- or three-dimensional) map. In this map, because similar individuals are projected to be close to one another, distances between individuals correspond to their dissimilarities. In other words, MDS makes a similarity map of a dataset.</p><p>Some of the dissimilarities and distances have a strong relation to the geographical location. For example, time distances are similar to geographical distances, and regional features will be similar if the regions are close together. Therefore, it will be useful to compare the MDS projection and geographical locations. However, because MDS projection is not concerned with the rotation, parallel translation, and similarity expansion, it might be difficult to compare the projection to the actual geographical locations. When geographically related similarities are visualized, projected locations should be bound to the geographical locations.</p><p>In this article, we propose Bayesian Geographical Multidimensional Scaling (BGMDS), in which geographical restrictions of projections are given from a statistical point of view. BGMDS gives not only geographically bound projections, but also incorporates the uncertainty of the projections.</p>


Sign in / Sign up

Export Citation Format

Share Document