scholarly journals Single-Shot Multicontrast X-ray Imaging for In Situ Visualization of Chemical Reaction Products

2021 ◽  
Vol 7 (11) ◽  
pp. 221
Author(s):  
Margarita Zakharova ◽  
Andrey Mikhaylov ◽  
Vitor Vlnieska ◽  
Danays Kunka

We present the application of single-shot multicontrast X-ray imaging with an inverted Hartmann mask to the time-resolved in situ visualization of chemical reaction products. The real-time monitoring of an illustrative chemical reaction indicated the formation of the precipitate by the absorption, differential phase, and scattering contrast images obtained from a single projection. Through these contrast channels, the formation of the precipitate along the mixing line of the reagents, the border between the solid and the solution, and the presence of the scattering structures of 100–200 nm sizes were observed. The measurements were performed in a flexible and robust setup, which can be tailored to various imaging applications at different time scales.

2015 ◽  
Vol 754-755 ◽  
pp. 508-512
Author(s):  
M.A.A. Mohd Salleh ◽  
A. Sugiyama ◽  
Hideyuki Yasuda ◽  
Stuart D. McDonald ◽  
Kazuhiro Nogita

This paper demonstrates the development of an experimental technique of in-situ observation for soldering of Sn-0.7wt%Cu lead-free solder on a Cu substrate which was achieved for the first time by synchrotron X-ray imaging. Reactions between liquid solder and Cu substrate during a soldering process were able to be recorded in real-time. Individual stages of the soldering process consisted of flux activation in removal of Cu oxide, solder melting and contact with the Cu substrate (wetting) and intermetallic compound (IMC) and void formation between the solder and Cu substrate. The technique development which includes experimental setup with calculated optimum beam energy in the range of 20 – 30 keV appears to result in a clear observation of real-time X-ray imaging of the soldering process. This technique provides a key method to understand the mechanism of formation of micro-electronic inter-connects for future electronic packaging applications.


2016 ◽  
Author(s):  
Lawrence J. D'Aries ◽  
Stuart R. Miller ◽  
Rob Robertson ◽  
Bipin Singh ◽  
Vivek V. Nagarkar

2013 ◽  
Vol 06 (02) ◽  
pp. 1350015 ◽  
Author(s):  
JONATHAN G. SUN ◽  
STEVEN G. ADIE ◽  
ERIC J. CHANEY ◽  
STEPHEN A. BOPPART

Pre-operative X-ray mammography and intraoperative X-ray specimen radiography are routinely used to identify breast cancer pathology. Recent advances in optical coherence tomography (OCT) have enabled its use for the intraoperative assessment of surgical margins during breast cancer surgery. While each modality offers distinct contrast of normal and pathological features, there is an essential need to correlate image-based features between the two modalities to take advantage of the diagnostic capabilities of each technique. We compare OCT to X-ray images of resected human breast tissue and correlate different tissue features between modalities for future use in real-time intraoperative OCT imaging. X-ray imaging (specimen radiography) is currently used during surgical breast cancer procedures to verify tumor margins, but cannot image tissue in situ. OCT has the potential to solve this problem by providing intraoperative imaging of the resected specimen as well as the in situ tumor cavity. OCT and micro-CT (X-ray) images are automatically segmented using different computational approaches, and quantitatively compared to determine the ability of these algorithms to automatically differentiate regions of adipose tissue from tumor. Furthermore, two-dimensional (2D) and three-dimensional (3D) results are compared. These correlations, combined with real-time intraoperative OCT, have the potential to identify possible regions of tumor within breast tissue which correlate to tumor regions identified previously on X-ray imaging (mammography or specimen radiography).


2016 ◽  
Vol 102 (3) ◽  
pp. 170-178 ◽  
Author(s):  
Tomoya Nagira ◽  
Noriaki Nakatsuka ◽  
Hideyuki Yasuda ◽  
Kentaro Uesugi ◽  
Akihisa Takeuchi

2018 ◽  
Vol 89 (5) ◽  
pp. 055101 ◽  
Author(s):  
Nicholas P. Calta ◽  
Jenny Wang ◽  
Andrew M. Kiss ◽  
Aiden A. Martin ◽  
Philip J. Depond ◽  
...  

2000 ◽  
Vol 216 (1-4) ◽  
pp. 263-272 ◽  
Author(s):  
P.J Wellmann ◽  
M Bickermann ◽  
D Hofmann ◽  
L Kadinski ◽  
M Selder ◽  
...  

2017 ◽  
Vol 103 (12) ◽  
pp. 668-677
Author(s):  
Tomoya Nagira ◽  
Hideyuki Yasuda ◽  
Ryo Unoki ◽  
Kouhei Morishita ◽  
Akira Sugiyama ◽  
...  

2020 ◽  
Author(s):  
Luzia S. Germann ◽  
Sebastian T. Emmerling ◽  
Manuel Wilke ◽  
Robert E. Dinnebier ◽  
Mariarosa Moneghini ◽  
...  

Time-resolved mechanochemical cocrystallisation studies have so-far focused solely on neat and liquid-assisted grinding. Here, we report the monitoring of polymer-assisted grinding reactions using <i>in situ</i> X-ray powder diffraction, revealing that reaction rate is almost double compared to neat grinding and independent of the molecular weight and amount of used polymer additives.<br>


2019 ◽  
Author(s):  
Hao Wu ◽  
Jeffrey Ting ◽  
Siqi Meng ◽  
Matthew Tirrell

We have directly observed the <i>in situ</i> self-assembly kinetics of polyelectrolyte complex (PEC) micelles by synchrotron time-resolved small-angle X-ray scattering, equipped with a stopped-flow device that provides millisecond temporal resolution. This work has elucidated one general kinetic pathway for the process of PEC micelle formation, which provides useful physical insights for increasing our fundamental understanding of complexation and self-assembly dynamics driven by electrostatic interactions that occur on ultrafast timescales.


Sign in / Sign up

Export Citation Format

Share Document