scholarly journals Development and Evaluation of the Ultrasonic Welding Process for Copper-Aluminium Dissimilar Welding

2022 ◽  
Vol 6 (1) ◽  
pp. 6
Author(s):  
Rafael Gomes Nunes Silva ◽  
Sylvia De Meester ◽  
Koen Faes ◽  
Wim De Waele

The demand for joining dissimilar metals has exponentially increased due to the global concerns about climate change, especially for electric vehicles in the automotive industry. Ultrasonic welding (USW) surges as a very promising technique to join dissimilar metals, providing strength and electric conductivity, in addition to avoid metallurgical defects, such as the formation of intermetallic compounds, brittle phases and porosities. However, USW is a very sensitive process, which depends on many parameters. This work evaluates the impact of the process parameters on the quality of ultrasonic spot welds between copper and aluminium plates. The weld quality is assessed based on the tensile strength of the joints and metallographic examination of the weld cross-sections. Furthermore, the welding energy is examined for the different welding conditions. This is done to evaluate the influence of each parameter on the heat input resulting from friction at the weld interface and on the weld quality. From the obtained results, it was possible to optimise parameters to achieve satisfactory weld quality in 1.0 mm thick Al–Cu plate joints in terms of mechanical and metallurgical properties.

2021 ◽  
pp. 002199832097681
Author(s):  
F Köhler ◽  
IF Villegas ◽  
C Dransfeld ◽  
A Herrmann

Ultrasonic welding is a promising technology to join fibre-reinforced thermoplastic composites. While current studies are mostly limited to fabric materials the applicability to unidirectional materials, as found in aerospace structures, would offer opportunities for joining primary aircraft structures. However, due to the highly anisotropic flow of a molten unidirectional ply undesired squeeze flow phenomena can occur at the edges of the weld overlap. This paper investigates how the fibre orientation in the plies adjacent to the weld line influences the welding process and the appearance of edge defects. Ultrasonic welding experiments with different layups and energy director configurations were carried out while monitoring temperatures at different locations inside and outside the weld overlap. The joints were characterized by single lap shear tests, analysis of corresponding fracture surfaces and microscopic cross-sections. Results showed that the anisotropic flow and the anisotropic thermal conductivity of the plies adjacent to the weld line have a distinct effect on the appearance and location of edge defects. By using energy directors that cover only part of the weld overlap area a new approach was developed to mitigate edge defects caused by the highly directional properties of the unidirectional plies.


Author(s):  
Ye Wang ◽  
Mi Zhao ◽  
Hongyu Xu ◽  
Maoliang Hu ◽  
Zesheng Ji

Metal inert gas arc welding process was implemented to join 6063T6 wrought alloy and ADC12 die-casting alloy using ER4047 filler metal. The microstructure of the weld seam and weld interface was investigated. The bonding strength of the butt joints was tested by Charpy U-notch impact test and tensile test. The results showed that a sound welding butt joint with finely silicon particles and excellent mechanical properties was formed, and the size of the silicon particles was nearly 2 μm. Compared with 6063T6 wrought alloy, the impact absorbing energies and the tensile strengths of the butt joint were higher and reached 1.173 kJ/cm2 and 205 MPa, respectively, and the fractures of all tensile specimens occur at the 6063T6 aluminum.


Author(s):  
Xudong Cheng ◽  
Patrick Schwieso ◽  
Hongseok Choi ◽  
Arindom Datta ◽  
Xiaochun Li

This work is to study micro thin film sensor embedding in metals for the production of miniature smart tooling. This technique promises to significantly improve the safety and reliability for manufacturing processes and reduce operation costs. One key concern of the current research is to investigate if sensor functionality can be maintained during and after embedding in metals by use of ultrasonic welding (USW), which could be hostile to micro thin film thermocouples (TFTCs) embedded near the welding interface. The welding workpieces, consisting of a nickel strip with embedded micro sensors and a copper thin sheet, were welded by USW process. Experimental results showed that TFTCs survived the ultrasonic welding process. The embedded TCFCs were also capable of measuring temperature in-situ near the weld interface during the embedding process.


Author(s):  
A. Siddiq ◽  
E. Ghassemieh

Ultrasonic welding (consolidation) process is a rapid manufacturing process that is used to join thin layers of metal at low temperature and low energy consumption. Experimental results have shown that ultrasonic welding is a combination of both surface (friction) and volume (plasticity) softening effects. In the presented work, an attempt has been made to simulate the ultrasonic welding of metals by taking into account these effects (surface and volume). A phenomenological material model has been proposed, which incorporates these two effects (i.e., surface and volume). The thermal softening due to friction and ultrasonic (acoustic) softening has been included in the proposed material model. For surface effects, a friction law with variable coefficient of friction that is dependent on contact pressure, slip, temperature, and number of cycles has been derived from experimental friction tests. The results of the thermomechanical analyses of ultrasonic welding of aluminum alloy have been presented. The goal of this work is to study the effects of ultrasonic welding process parameters, such as applied load, amplitude of ultrasonic oscillation, and velocity of welding sonotrode on the friction work at the weld interface. The change in the friction work at the weld interface has been explained on the basis of softening (thermal and acoustic) of the specimen during the ultrasonic welding process. In the end, a comparison between experimental and simulated results has been presented, showing a good agreement.


Author(s):  
S. Shawn Lee ◽  
Tae Hyung Kim ◽  
S. Jack Hu ◽  
Wayne W. Cai ◽  
Jeffrey A. Abell

One of the major challenges in manufacturing automotive lithium-ion batteries and battery packs is to achieve consistent weld quality in joining multiple layers of dissimilar materials. While most fusion welding processes face difficulties in such joining, ultrasonic welding stands out as the ideal method. However, inconsistency of weld quality still exists because of limited knowledge on the weld formation through the multiple interfaces. This study aims to establish real-time phenomenological observation on the multilayer ultrasonic welding process by analyzing the vibration behavior of metal layers. Such behavior is characterized by a direct measurement of the lateral displacement of each metal layer using high-speed images. Two different weld tools are used in order to investigate the effect of tool geometry on the weld formation mechanism and the overall joint quality. A series of microscopies and bond density measurements is carried out to validate the observations and hypotheses of those phenomena in multilayer ultrasonic welding. The results of this study enhance the understanding of the ultrasonic welding process of multiple metal sheets and provide insights for optimum tool design to improve the quality of multilayer joints.


Author(s):  
Bongsu Kang ◽  
Wayne Cai ◽  
Chin-An Tan

Ultrasonic metal welding for battery tabs must be performed with 100% reliability in battery pack manufacturing as the failure of a single weld essentially results in a battery that is inoperative or cannot deliver the required power due to the electrical short caused by the failed weld. In ultrasonic metal welding processes, high-frequency ultrasonic energy is used to generate an oscillating shear force (sonotrode force) at the interface between a sonotrode and few metal sheets to produce solid-state bonds between the sheets clamped under a normal force. These forces, which influence the power needed to produce the weld and the weld quality, strongly depend on the mechanical and structural properties of the weld parts and fixtures in addition to various welding process parameters such as weld frequencies and amplitudes. In this work, the effect of structural vibration of the battery tab on the required sonotrode force during ultrasonic welding is studied by applying a longitudinal vibration model for the battery tab. It is found that the sonotrode force is greatly influenced by the kinetic properties, quantified by the equivalent mass and equivalent stiffness, of the battery tab and cell pouch interface. This study provides a fundamental understanding of battery tab dynamics during ultrasonic welding and its effects on weld quality, and thus provides useful guidelines for design and welding of battery tabs from tab dynamics point of view.


2021 ◽  
Author(s):  
Cailing Wang ◽  
Yanfeng Xing ◽  
Jingyao Hu ◽  
Junding Luo ◽  
Sheng Zeng

Abstract The ultrasonic welding was carried out to improve the quality of dissimilar Al/Mg alloys joint. The effects of laser texturing on the microstructure and mechanism of AZ31B/5052 joint connected by ultrasonic welding were also investigated. A series of laser texturing experiments on Al alloy (5052) and Mg alloy (AZ31B) were performed to determine the process parameters and their ef-fect on ultrasonic weld quality, especially on weld strength. Little effect was attained by opti-mizing welding parameters in improving mechanical properties. Both welding parameters and different texture pattern were investigated to obtain good weld quality. The connection mecha-nisms of joints were discussed based on the analysis of weld interface morphology, microstruc-ture evolution. Mechanical analysis of particle and movement of material atoms were analyzed in the study to explain the connect mechanism. The results show that the better lock-interface and lager lap shear strength were attained by laser texture addition and optimal welding parameters. Compared with the untextured joint, swirling bonding interface was obtained after the laser tex-ture. The laser texture with grid pattern was found to raise the strength up to 26% higher maxi-mum tensile-shear load than the joints obtained with the untextured surface.


Author(s):  
S.S. Volkov ◽  
A.V. Konovalov ◽  
A.L. Remizov

In this work, the impact of dyes and fillers on the process of heat generation during ultrasonic welding of plastics was studied, which made it possible to influence the weldability and quality of products. Experiments to weld samples of plastics with various concentrations of dyes and fillers were carried out. Based on the experimental data, it was established that the main parameters of the welding process and the properties of the polymer influenced weldability and performance indicators of the weld joint. The nature and the concentration of the dyes and fillers injected into the polymer to obtain certain characteristics and colors had an impact as well. Optimal concentrations that provided the best weldability, strength and quality of the weld products were obtained for fat-soluble dyes and organic pigments (0.1–1.5 g/kg) as well as disperse fillers and inorganic pigments (5–12 g/kg). Types of dyes and fillers and their optimal concentrations for fat-soluble dyes, organic pigments and disperse fillers were determined. Parameters of the process of ultrasonic welding of dyed and filled plastics were defined. It was established that welded products with the recommended optimal concentration and types of dyes and fillers showed the best weldability, increased strength and performance, and could be used longer under various climatic conditions.


Sign in / Sign up

Export Citation Format

Share Document