scholarly journals Phytoplankton Dynamics in the Middle Adriatic Estuary, with a Focus on the Potentially Toxic Genus Pseudo-nitzschia

2020 ◽  
Vol 8 (8) ◽  
pp. 608
Author(s):  
Jasna Arapov ◽  
Mia Bužančić ◽  
Sanda Skejić ◽  
Jelena Mandić ◽  
Ana Bakrač ◽  
...  

The Krka River estuary is a karstic, permanently stratified estuary due to the strong freshwater inflow. It is a special environment in which to study the phytoplankton community, especially because this area is an important aquaculture site. Among other potentially toxic phytoplankton species, the diatom genus Pseudo-nitzschia occurs frequently and is a potential source of domoic acid (DA), causing shellfish toxicity and human intoxication. The main objective was to examine the dynamics of the phytoplankton community and, in particular, the genus Pseudo-nitzschia in the upper part of the Krka estuary, through monthly sampling over two years. The phytoplankton community was analysed using light microscopy and scanning electron microscopy to determine the diversity of Pseudo-nitzschia species and characterise the environmental parameters associated with a high abundance of Pseudo-nitzschia species. Seven Pseudo-nitzschia species were identified in the investigation, with higher frequencies and abundances in the less variable layer, at a 7 m depth. Blooms of Pseudo-nitzschia were noted in the late summer/early autumn, dominated by P. delicatissima/arenysensis. Winter assemblages were characterised by P. pseudodelicatissima/cuspidata, P. calliantha, and P. subfraudulenta, and were associated with domoic acid occurrence in shellfish.

2017 ◽  
Vol 65 (3) ◽  
pp. 356-372 ◽  
Author(s):  
Ana Karoline Duarte dos Santos ◽  
Amanda Lorena Lima Oliveira ◽  
Jordana Adorno Furtado ◽  
Francinara Santos Ferreira ◽  
Bethânia de Oliveira Araújo ◽  
...  

Abstract The Bacanga River Estuary has a hydrodynamic behavior and its tidal flow is limited by a dam. It is considered as a hypertrophic environment that receives daily high loads of domestic sewage without treatment. This study aimed to evaluate the spatial and temporal variation of phytoplankton community and its relationship with environmental parameters. Bi-monthly sampling campaigns were carried out at six fixed sites between 2012 and 2013. Physical-chemical and biological parameters were collected (chlorophyll a, phytoplankton composition and abundance) to perform the statistical correlations. The results indicate that phytoplankton community is mostly represented by diatoms, with Skeletonema costatum being the dominant species responsible for bloom in April and June of 2012. The dominance of this species is related to the high silicate concentrations, pH and turbidity. Other blooms events as well as the Euglena gracilis and Chlamydomonas sp. were recorded in February 2013, when the total phosphorus concentrations were high and the dissolved oxygen concentrations were higher. Dinoflagellates, cyanobacteria and diatom Thallassiosira sp. were widely distributed in the dry period and highly correlated with salinity, water transparency and nutrients. Hence, the distribution of phytoplankton community is more defined seasonally, rather than spatially.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cristina Bacian ◽  
Cristobal Verdugo ◽  
Katherine García ◽  
Josu Perez-Larruscain ◽  
Ignacio de Blas ◽  
...  

Vibrio parahaemolyticus is the leading cause of seafood-associated bacterial gastroenteritis worldwide. Although different studies have focused on its pattern of variation over time, knowledge about the environmental factors driving the dynamics of this pathogen, within the Chilean territory, is still lacking. This study determined the prevalence of total and pathogenic V. parahaemolyticus strains (tdh and/or trh genes) in mussels (Mytilus chilensis) collected from two natural growing areas between 2017 and 2018, using selective agar and PCR analysis. V. parahaemolyticus was detected in 45.6% (93/204) of pooled samples from the Valdivia River Estuary. The pathogenic strains carrying the tdh and/or trh gene were detected in 11.8% (24/204): tdh in 9.8% (20/204), trh in 0.5% (1/204), and 1.5% (3/204) presented both genes. In Reloncaví Fjord, V. parahaemolyticus was detected in 14.4% (30/209) of the samples, pathogenic V. parahaemolyticus carrying the trh gene was detected in 0.5% (1/209) of the samples, while the tdh gene was not detected in the samples from this area. The total count of mauve-purple colonies typical of V. parahaemolyticus on CHROMagar was positively associated by multivariate analysis with area, water temperature, and salinity. Similarly, V. parahaemolyticus detection rates by PCR had a positive correlation with the area and water temperature. The chances of detecting total V. parahaemolyticus in the Valdivia River Estuary are significantly higher than in the Reloncaví Fjord, but inversely, during spring-summer months, the interaction factor between the area and temperature indicated that the chances of detecting V. parahaemolyticus are higher in the Reloncaví Fjord. Interestingly, this period coincides with the season when commercial and natural-growing shellfish are harvested. On the other hand, pathogenic V. parahaemolyticus tdh+ was significantly correlated with an increase of water temperature. These environmental parameters could be used to trigger a warning on potential hazard, which would influence human health and economic losses in aquaculture systems.


2012 ◽  
Vol 64 (2) ◽  
pp. 585-595 ◽  
Author(s):  
Jelena Rakocevic

Phytoplankton seasonal succession and spatial heterogeneity were studied in Lake Skadar from February to December 2004. A total of 167 taxa from 6 algal divisions were observed, with Bacillariophyta being best represented (52.8%). The general pattern of phytoplankton seasonal succession in Lake Skadar was: Bacillariophyta in the spring, Chlorophyta in early summer, Cyanobacteria and Chlorophyta in late summer and Bacillariophyta and Chlorophyta in autumn and winter. Distinct spatial heterogeneity was observed. The central, open part of the lake (pelagic zone) was characterized by dominant euplanktonic species, mostly diatoms, whereas the western and northwestern parts (more isolated and shallower) had higher abundance of greens and blue-greens and a higher percentage of resuspended benthic-epiphytic forms in the phytoplankton community. Comparison with former phytoplankton data showed distinct differences in terms of the qualitative and quantitative composition of the phytoplankton community of Lake Skadar, which indicates lake deterioration.


2021 ◽  
Vol 26 (4) ◽  
Author(s):  
Jessica Chappell ◽  
Stefanie Whitmire ◽  
David Sotomayor‐Ramírez ◽  
Gustavo Martínez

1996 ◽  
Vol 47 (4) ◽  
pp. 659 ◽  
Author(s):  
PA Thompson ◽  
W Hosja

During 1993-94 the phytoplankton community in the upper Swan River estuary had a peak chlorophyll a concentration of 57 mg m-3 during early summer (December 1993) and a second peak of 35 mg m-3 during late autumn (May 1994). Mid summer was characterized by low cell densities and low chlorophyll a concentrations. The potential of the phytoplankton community for nutrient limitation was assessed with dilution bioassays given nutrient mixes deficient in one of the following: nitrogen, phosphate, silicate, iron, trace metals, chelators, or vitamins. During the mid-summer period of low phytoplankton abundance, nitrogen was the nutrient with the greatest potential to limit algal biomass. During mid summer, ambient N:P ratios tended to be near unity and bioassays indicated that the available pool of N was up to 20 times more limiting to biomass development than was available P. Also during mid summer, bioassay treatments given no nitrogen and control treatments given no nutrients showed little growth, reaching chlorophyll a concentrations -1/30th of those given a full suite of nutrients. Chlorophyll a concentrations in the bioassay control treatments given no nutrients were correlated (r2 = 0.74) with measured surface nitrate concentrations; this suggested that nitrate inputs may be a major factor controlling phytoplankton biomass in this ecosystem. The correlation between surface nitrate concentration and rainfall (r2 = 0.69) further suggests that rainfall may be the most important mechanism supplying nitrate to the surface waters of this estuary.


2014 ◽  
Vol 69 (2) ◽  
pp. 107-116 ◽  
Author(s):  
Tatenda Dalu ◽  
P. William Froneman ◽  
Nicole B. Richoux

Sign in / Sign up

Export Citation Format

Share Document