scholarly journals Visualization Investigation of Energy Dissipation Induced by Eddy Currents for a Solitary-Like Wave Passing over Submerged Breakwater Sets

2020 ◽  
Vol 8 (11) ◽  
pp. 834
Author(s):  
Chi-Yu Li ◽  
Ruey-Syan Shih ◽  
Wen-Kai Weng

Wave attenuation for the purpose of coastal protection has been an important topic in coastal engineering. Wave attenuation in relation to the vortices induced by a solitary-like wave propagating over submerged breakwaters (BWs) is discussed in this paper. A series of hydraulic model experiments was conducted to investigate the occurrence of eddies, the types and combinations of submerged BWs, and related phenomena of the range expansion of vortices. The microscopic changes in the flow field, the variation of eddies, and the distributions of streamlines were analyzed using the particle image velocimetry (PIV) technique. The measured transmission and reflection coefficients, along with the concept of energy conservation, were also examined to support the results. The results indicate that the attenuated wave energy is related to the induced vortices, and show that the total relative vortex energy for rectangular submerged BWs is larger than that for undulating submerged BWs in both the single and composite sets. The magnitude of the maximum vorticity of the undulating BW sets is larger and more concentrated than that of the rectangular BW sets; however, the total vortex energy is slightly smaller owing to the narrower vortex area range.

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3499
Author(s):  
Anatoly B. Rinkevich ◽  
Dmitry V. Perov ◽  
Yuriy I. Ryabkov

The microwave properties of a composite material containing flakes of finemet-type nanocrystalline alloy placed in the epoxy matrix have been investigated. Two compositions have been studied: with 15% and 30% flakes. Frequency dependences of transmission and reflection coefficients are measured in the frequency range from 12 to 38 GHz. The dielectric permittivity and magnetic permeability are obtained, and the microwave losses are calculated. The dependences of transmission and reflection coefficients have been drawn as functions of wave frequency and thickness of the composite material, taking into account the frequency dependences of permittivity and permeability. The regions of maximal and minimal microwave absorption have been defined. The influence of wave interference on the frequency dependence of microwave absorption is studied.


Author(s):  
Yoshie Watanabe ◽  
Yuji Hashizume ◽  
Nobuyuki Fujisawa

An experimental technique for simultaneous measurement of temperature and velocity in a thermal flow is described. This technique is based on the two-color laser-induced fluorescence technique combined with the particle image velocimetry. Illumination is provided from Nd:YAG laser and the fluorescent dyes are chosen as Rhodamine B and Fluorescent Sodium, which combination allows the accurate velocity measurement in a wide range of flow velocity and high temperature sensitivity in temperature measurement. The measurement of temperature and velocity in turbulent buoyant plume is carried out by this method, and the structure of the plume is studied in connection with the entrainment of surrounding fluid at the interface.


2017 ◽  
Vol 54 (7) ◽  
pp. 933-944 ◽  
Author(s):  
Núria M. Pinyol ◽  
Mauricio Alvarado

Over the last few decades, the particle image velocimetry (PIV) technique has become an interesting tool used to measure displacements in the field of experimental mechanics. This paper presents a procedure to interpret PIV displacements, measured following an Eulerian scheme, with the purpose of providing accumulated displacements, velocities, accelerations, and strains on points representing physical particles. Strains are computed as the gradient of displacements. When compared with other standard procedures already published, the presented methodology is especially well suited to interpret large strains. The basis of the procedure is to map displacement increments measured through PIV analysis on the subset (or patch) centres into numerical particles that are defined as portions of the moving masses whose deformation is analyzed. The implementation of the method is explained in detail, highlighting its simplicity. The procedure can be used as a post-processor of currently available PIV software packages. The methodology is first applied to synthetic cases of rectangular samples in which known displacements are imposed and also to a sandy slope failure experiment involving large displacements. The method reproduces satisfactorily the recorded images.


Author(s):  
O. Langueur ◽  
M. Merad ◽  
A. Rassoul

In this paper, we study the Duffin–Kemmer–Petiau (DKP) equation in the presence of a smooth barrier in dimensions space–time (1+1) dimensions. The eigenfunctions are determined in terms of the confluent hypergeometric function [Formula: see text]. The transmission and reflection coefficients are calculated, special cases as a rectangular barrier and step potential are analyzed. A numerical study is presented for the transmission and reflection coefficients graphs for some values of the parameters [Formula: see text] are plotted.


Author(s):  
Hironori Tohmyoh

Abstract This paper presents the materials evaluation and environmental monitoring techniques utilizing the acoustic resonance, which have been developed by the authors. When the ultrasound passes through thin layer, the transmission and reflection coefficients take their maximum and the minimum values at the resonant frequency. We call this acoustic resonance. The acoustic properties of a polymer film, e.g., the acoustic impedance, ultrasonic velocity, and density, can be determined by observing the acoustic resonance, which occurs at the water/film/reflection plate interface. Acoustic resonance occurs at the reflection plate/film/outer environment interface sensitively changes depending on the outer environment. With use of this, the temperature of the water as an outer environment is tried to be monitored.


2019 ◽  
Vol 34 (16) ◽  
pp. 1950087 ◽  
Author(s):  
Luis Puente ◽  
Carlos Cocha ◽  
Clara Rojas

We present a new potential barrier that presents the phenomenon of superradiance when the reflection coefficient [Formula: see text] is greater than one. We calculated the transmission and reflection coefficients for three different regions. The results are compared with those obtained for the hyperbolic tangent potential barrier and the step potential barrier. We also present the solution of the Klein–Gordon equation with the Lambert-[Formula: see text] potential barrier in terms of the Heun Confluent functions.


Sign in / Sign up

Export Citation Format

Share Document