scholarly journals Spatio-Temporal Variability of Anthropogenic and Natural Wrack Accumulations along the Driftline: Marine Litter Overcomes Wrack in the Northern Sandy Beaches of Portugal

2020 ◽  
Vol 8 (12) ◽  
pp. 966
Author(s):  
Laura Guerrero-Meseguer ◽  
Puri Veiga ◽  
Marcos Rubal

Marine litter can end up deposited on sandy beaches and become entangled in the natural wrack, threatening its roles in ecosystems. However, it is currently unknown whether the storage of both artificial and natural accumulations on sandy beaches is correlated. Here, we quantified and compared, by first time, the litter and natural wrack on five sandy beaches in the north of Portugal. Results showed that the amount of marine litter and natural wrack were not correlated. Most of the sandy beaches had more litter than wrack and both artificial and natural accumulations disclosed high spatio-temporal variability. In summer, annual and opportunistic macroalgae dominated the wrack, while the litter was mainly formed by cigarette butts and leftover food. In winter, perennial taxa were more abundant in the wrack and plastics from mussel farming and cotton bud sticks dominated the litter. The macroalga Fucus spp., plastic pieces and materials from fishing were frequent in both periods. This study confirms that, currently, more litter than natural wrack reaches the Northern Portuguese sandy beaches, evidencing the need to take urgent measures against this contamination. Future management measures should consider this spatio-temporal variability to quantify both depositions.

2019 ◽  
Vol 6 ◽  
Author(s):  
Laura Guerrero-Meseguer ◽  
Ana Catarina Torres ◽  
Puri Veiga ◽  
Marcos Rubal

Author(s):  
V.V. Guryanov ◽  
A.K. Sungatullin

The spatio-temporal variability of the average values of temperature indices of climate extremity in the territory of the European part of Russia (ER) in 1980-2019 is presented. To calculate the extremeness indices, we used hourly data on the maximum and minimum temperatures obtained using the ERA5 reanalysis on a 1°´1° spatial grid. Statistical processing of the index values revealed an increase in the temperature indices TNX, TNN, TXN, TXX, associated with the minimum and maximum temperatures, with the exception of the north and southeast of the region. An increase in the number of sunny days and a decrease in the number of frosty days were also revealed.


2021 ◽  
Author(s):  
Harry West ◽  
Nevil Quinn ◽  
Michael Horswell

<p>The North Atlantic Oscillation (NAO) is often cited as the primary atmospheric-oceanic circulation or teleconnection influencing regional climate in Great Britain. As our ability to predict the NAO several months in advance improves, it is important that we also continue to develop our spatial and temporal understanding of the rainfall signatures which the circulation produces.</p><p>We present a novel application of spatial statistics to explore variability in monthly NAO rainfall signatures using a 5km gridded monthly Standardised Precipitation Index (SPI) dataset. We first use the Getis-Ord Gi* statistic to map spatially significant hot and cold spots (clusters of high/wet and low/dry SPI values) in average monthly rainfall signatures under NAO Positive and Negative conditions over the period 1900-2015. We then look across the record and explore the temporal variability in these signatures, in other words how often a location is in a significant spatial hot/cold spot (high/low SPI) at a monthly scale under NAO Positive/Negative conditions.</p><p>The two phases of the NAO are typically more distinctive in the winter months, with stronger and more variable NAO Index values. The average monthly SPI analysis reveals a north-west/south-east ‘spatial divide’ in rainfall response. NAO Positive phases result in a southerly North Atlantic Jet Stream bringing warm and wet conditions from the tropics, increasing rainfall particularly in the north-western regions. However, under NAO Negative phases which result in a northerly Jet Stream, much drier conditions in the north-west prevail. Meanwhile in the south-eastern regions under both NAO phases a weaker and opposite wet/dry signal is observed. This north-west/south-east ‘spatial divide’ is marked by the location of spatially extensive hot/cold spots. The Getis-Ord Gi* result identifies that the spatial pattern we detect in average winter rainfall is statistically significant. Looking across the record, this NW/SE opposing response appears to have a relatively high degree of spatio-temporal consistency. This suggests that there is a high probability that NAO Positive and Negative phases will result in this NW/SE statistically significant spatial pattern.</p><p>Even though the phases of the NAO in the summer months are less distinctive they still produce rainfall responses which are evident in the monthly average SPI. However, the spatiality in wet/dry conditions is more homogenous across the country. In other words the ‘spatial divide’ observed in winter is diluted in summer. As a result, the occurrence of significant hot/cold spots is more variable in space and time.</p><p>Our analysis demonstrates a novel application of the Getis-Ord Gi* statistic which allows for spatially significant patterns in the monthly SPI data to be mapped for each NAO phase. In winter months particularly, this analysis reveals statistically significant opposing rainfall responses, which appear to have long-term spatio-temporal consistency. This is important because as winter NAO forecasting skill improves, the findings of our research enable a more spatially reliable estimate of the likely impacts of NAO-influenced rainfall distribution.</p>


2022 ◽  
Vol 964 (1) ◽  
pp. 012017
Author(s):  
Thanh-Khiet L. Bui ◽  
Quoc-Khanh Pham ◽  
Nhu-Thuy Doan ◽  
Thanh-Ban Nguyen ◽  
Van-Nghia Nguyen ◽  
...  

Abstract Marine debris is a significant threat to the marine environment, human health and the economy in Can Gio island, Vietnam. In this study, we conducted beach litter surveys to quantify and characterize marine litter from six beach transects in this region for the first time using the OSPAR beach litter monitoring guideline. A total of 29,456 items weighting 529,432 g was recorded from 12 surveys in two monitoring campaigns in December 2019 (dry season) and in June 2020 (rainy season). Plastic was the most abundant type of litter in terms of quantity (a total of 26,662 items) and weight (325,606 g), followed by paper and cardboard, cloth, wood, metal, glass and ceramics, rubber and other items. Meanwhile, ropes (less than 1 cm in diameter) and plastic bags accounted for the major parts of sampled plastic items, i.e., 20.18% and 14.46%, respectively. In general, a higher percentage of marine litter, particularly the fishing related items, was found in the rainy season than in the dry season, possibly due to increased fishing and aquaculture activities. In contrast, a reduction pattern of the single use plastics in the rainy season might be due to the decreased tourism activities during the Covid pandemic period. This study not only showed the magnitude of litter pollution, but also provided valuable information that could help decision making to better control and reduce marine litter in the region. In addition, insights from this study indicate that there is an urgent need to design collection, reuse and recycling programs in the area. The collected recyclables, specially plastics, will be a great source of materials for recyclers in a circular economy achieving sustainable development goals.


Author(s):  
Nicolas Guillou ◽  
Simon P. Neill ◽  
Jérôme Thiébot

Initial selection of tidal stream energy sites is primarily based on identifying areas with the maximum current speeds. However, optimal design and deployment of turbines requires detailed investigations of the temporal variability of the available resource, focusing on areas with reduced variability, and hence the potential for more continuous energy supply. These aspects are investigated here for some of the most promising sites for tidal array development across the north-western European shelf seas: the Alderney Race, the Fromveur Strait, the Pentland Firth and the channels of Orkney. Particular attention was dedicated to asymmetry between the flood and ebb phases of the tidal cycle (due to the phase relationship between M 2 and M 4 constituents), and spring-neap variability of the available resource (due to M 2 and S 2 compound tides). A series of high-resolution models were exploited to (i) produce a detailed harmonic database of these three components, and (ii) characterize, using energy resource metrics, temporal variability of the available power density. There was a clear contrast between the Alderney Race, with reduced temporal variability over semi-diurnal and fortnightly time scales, and sites in western Brittany and North Scotland which, due to increased variability, appeared less attractive for optimal energy conversion. This article is part of the theme issue ‘New insights on tidal dynamics and tidal energy harvesting in the Alderney Race’.


2017 ◽  
Author(s):  
David Piper ◽  
Michael Kunz

Abstract. Comprehensive lightning statistics are presented for a large, contiguous domain covering several European countries such as France, Germany, Austria, or Switzerland. Spatio-temporal variability of convective activity is investigated based on a 14-year time series (2001–2014) of lightning data. Based on the binary variable thunderstorm day, the mean spatial patterns of lightning activity and regional peculiarities regarding seasonality are discussed. Diurnal cycles are compared among several regions and evaluated with respect to major seasonal changes. Further analyzes are performed regarding interannual variability and the impact of teleconnection patterns on convection. Mean convective activity across central Europe is characterized by a strong northwest-to-southeast gradient with pronounced secondary features superimposed. The zone of maximum values of thunderstorm days propagates southwestward along the southern Alpine range from April to July. Diurnal cycles vary substantially both between different months and regions, particularly regarding the incidence of nighttime lightning. The North Atlantic Oscillation (NAO) is shown to have a significant impact on convective activity in several regions, pointing to a crucial role of large-scale flow in steering spatio-temporal patterns of convective activity.


Sign in / Sign up

Export Citation Format

Share Document