scholarly journals Numerical Study on the Vibration and Noise Characteristics of a Delft Twist11 Hydrofoil

2021 ◽  
Vol 9 (2) ◽  
pp. 144
Author(s):  
Hong-Sik Hwang ◽  
Kwang-Jun Paik ◽  
Soon-Hyun Lee ◽  
Gisu Song

Underwater radiated noise (URN) is greatly increasing due to an increase in commercial shipping, sonar activities, and climate change. As a result, marine life is having difficulty communicating, and marine ecosystem disturbances are occurring. The noise from the cavitation of propellers is affecting URN. Cavitation is a phenomenon in which rapid changes of pressure in a liquid lead to the formation of small vapor-filled cavities in places where the pressure is relatively low. This phenomenon results in poor efficiency of the propeller or turbine of a ship and noise, vibration, and erosion. For these reasons, this study examines the URN of sheet and cloud cavitation. A numerical analysis was done using a Delft Twist11 hydrofoil. The URN resulting from cloud cavitation and sheet cavitation was compared with the numerical results of previous studies. The results showed that URN normally increases due to pressure fluctuations when cavitation occurs. URN increased more significantly in conditions of cloud cavitation than in cavitation inception. It is also shown that a frequency begins to occur after the occurrence of the cloud cavitation, and the frequency grew as the cavitation fully developed.

2021 ◽  
Vol 9 ◽  
Author(s):  
Haiyu Liu ◽  
Pengcheng Lin ◽  
Fangping Tang ◽  
Ye Chen ◽  
Wenpeng Zhang ◽  
...  

In order to study the energy loss of bi-directional hydraulic machinery under cavitation conditions, this paper uses high-speed photography combined with six-axis force and torque sensors to collect cavitating flow images and lift signals of S-shaped hydrofoils simultaneously in a cavitation tunnel. The experimental results show that the stall angle of attack of the S-shaped hydrofoil is at ±12° and that the lift characteristics are almost symmetrical about +1°. Choosing α = +6° and α = −4° with almost equal average lift for comparison, it was found that both cavitation inception and cloud cavitation inception were earlier at α = −4° than at α = +6°, and that the cavitation length at α = −4° grew significantly faster than at α = +6°. When α = +6°, the cavity around the S-shaped hydrofoil undergoes a typical cavitation stage as the cavitation number decreases: from incipient cavitation to sheet cavitation to cloud cavitation. However, when α = −4°, as the cavitation number decreases, the cavitation phase goes through a developmental process from incipient cavitation to sheet cavitation to cloud cavitation to sheet cavitation to cloud cavitation, mainly because the shape of the S-shaped hydrofoil at the negative angle of attack affects the flow of the cavity tails, which is not sufficient to form re-entrant jets that cuts off the sheet cavitation. The formation mechanism of cloud cavitation at the two different angles of attack (α = +6°、−4°) is the same, both being due to the movement of the re-entrant jet leading to the unstable shedding of sheet cavity. The fast Fourier analysis reveals that the fluctuations of the lift signals under cloud cavitation are significantly higher than those under non-cavitation, and the main frequencies of the lift signals under cloud cavitation were all twice the frequency of the cloud cavitation shedding.


2006 ◽  
Vol 129 (3) ◽  
pp. 279-292 ◽  
Author(s):  
Olivier Coutier-Delgosha ◽  
François Deniset ◽  
Jacques André Astolfi ◽  
Jean-Baptiste Leroux

This paper presents comparisons between two-dimensional (2D) CFD simulations and experimental investigations of the cavitating flow around a symmetrical 2D hydrofoil. This configuration was proposed as a test case in the “Workshop on physical models and CFD tools for computation of cavitating flows” at the 5th International Symposium on cavitation, which was held in Osaka in November 2003. The calculations were carried out in the ENSTA laboratory (Palaiseau, France), and the experimental visualizations and measurements were performed in the IRENav cavitation tunnel (Brest, France). The calculations are based on a single-fluid approach of the cavitating flow: the liquid/vapor mixture is treated as a homogeneous fluid whose density is controlled by a barotropic state law. Results presented in the paper focus on cavitation inception, the shape and the general behavior of the sheet cavity, lift and drag forces without and with cavitation, wall pressure signals around the foil, and the frequency of the oscillations in the case of unsteady sheet cavitation. The ability of the numerical model to predict successively the noncavitating flow field, nearly steady sheet cavitation, unsteady cloud cavitation, and finally nearly supercavitating flow is discussed. It is shown that the unsteady features of the flow are correctly predicted by the model, while some subtle arrangements of the two-phase flow during the condensation process are not reproduced. A comparison between the peer numerical results obtained by several authors in the same flow configuration is also performed. Not only the cavitation model and the turbulence model, but also the numerical treatment of the equations, are found to have a strong influence on the results.


Author(s):  
Ravil Nigmatullin ◽  
Larisa Terenteva

Abstract In the present work a numerical study of tone noise generated by the last stage of the Low Pressure Turbine (LPT) of an aircraft engine designed for a medium-haul civilian aircraft has been conducted. The impact of struts on the tone noise characteristics is estimated. The method for turbine noise calculation is based on numerical integration of the three-dimensional unsteady Reynolds averaged Navier-Stokes equations using an in-house code for multi-stage simulations. To obtain the tonal characteristics of the generated noise, the pressure pulsation field is processed using the methods of radial mode analysis. The calculated pressure fluctuations contain all possible components of the frequency-modal spectrum, which allows us to determine profile of the generated tone noise and find propagating modes with maximum amplitude. The calculations showed that the presence of struts leads to a scattering effect, which manifests as an increase in the number of generated circumferential modes. These circumferential modes propagate both downstream and upstream and increase the total level of tone noise. The amplitudes of circumferential modes related to two different types of the interaction, rotor-stator and rotor-struts, are compared.


Author(s):  
Umut Can Coskun ◽  
Hasan Gunes ◽  
Kemal Sarioglu ◽  
Husnu Kerpicci

In this study a numerical study of a suction muffler in a hermetic reciprocating compressor of a domestic refrigerator is performed using a finite volume based flow solver (Fluent). In order to reveal the behavior of the flow realistically, unsteady experimental pressure data has been used in the outlet boundary condition for the simulations. Detailed investigations are carried out to reveal the instantaneous flow behavior in different muffler sections such as channel and chambers based on the mass flow rate variation with respect to crankshaft angle. Power spectrum of pressure fluctuations at selected points help to reveal the noise characteristics of the muffler. This study gives a comprehensive insight into the interaction of muffler chambers with flow through the channel. In a previous study, the ratio of the chamber volumes were shown to be an important design parameter. To verify this assumption, three prototype muffler geometries were simulated. In these prototypes, the plate that divides the muffler into two chambers was moved by 7 mm and 10 mm in the direction to enlarge the second chamber. The flow through the prototype geometries were investigated numerically. The results showed that the aerodynamic performance increased while the aero-acoustic performance slightly decreased. Furthermore, this study aims to be an initial step to a more complicated optimization process which involves the inlet valve dynamics.


2004 ◽  
Vol 48 (01) ◽  
pp. 15-30
Author(s):  
Hanseong Lee ◽  
Spyros A. Kinnas

Most marine propellers operate in nonaxisymmetric inflows, and thus their blades are often subject to an unsteady flow field. In recent years, due to increasing demands for faster and larger displacement ships, the presence of blade sheet and tip vortex cavitation has become very common. Developed tip vortex cavitation, which often appears together with blade sheet cavitation, is known to be one of the main sources of propeller-induced pressure fluctuations on the ship hull. The prediction of developed tip vortex cavity as well as blade sheet cavity is thus quite important in the assessment of the propeller performance and the corresponding pressure fluctuations on the ship hull. A boundary element method is employed to model the fully unsteady blade sheet (partial or supercavitating) and developed tip vortex cavitation on propeller blades. The extent and size of the cavity is determined by satisfying both the dynamic and the kinematic boundary conditions on the cavity surface. The numerical behavior of the method is investigated for a two-dimensional tip vortex cavity, a three-dimensional hydrofoil, and a marine propeller subjected to nonaxisymmetric inflow. Comparisons of numerical predictions with experimental measurements are presented.


Author(s):  
Michele Battistoni ◽  
Sibendu Som ◽  
Douglas E. Longman

Fuel injectors often feature cavitation because of large pressure gradients, which in some regions lead to extremely low pressures. The main objective of this work is to compare the prediction capabilities of two multiphase flow approaches for modeling cavitation in small nozzles, like those used in high-pressure diesel or gasoline fuel injectors. Numerical results are assessed against quantitative high resolution experimental data collected at Argonne National Laboratory using synchrotron X-ray radiography of a model nozzle. One numerical approach uses a homogeneous mixture model with the volume of fluid (VOF) method, in which phase change is modeled via the homogeneous relaxation model (HRM). The second approach is based on the multifluid nonhomogeneous model and uses the Rayleigh bubble-dynamics model to account for cavitation. Both models include three components, i.e., liquid, vapor, and air, and the flow is compressible. Quantitatively, the amount of void predicted by the multifluid model is in good agreement with measurements, while the mixture model overpredicts the values. Qualitatively, void regions look similar and compare well with the experimental measurements. Grid converged results have been achieved for the prediction of mass flow rate while grid-convergence for void fraction is still an open point. Simulation results indicate that most of the vapor is produced at the nozzle entrance. In addition, downstream along the centerline, void due to expansion of noncondensable gases has been identified. The paper also includes a discussion about the effect of turbulent pressure fluctuations on cavitation inception.


2021 ◽  
Vol 2088 (1) ◽  
pp. 012040
Author(s):  
A V Sentyabov ◽  
D V Platonov ◽  
A V Minakov ◽  
A S Lobasov

Abstract The paper presents a study of the instability of the precessing vortex core in the model of the draft tube of a hydraulic turbine. The study was carried out using numerical modeling using various approaches: URANS, RSM, LES. The best agreement with the experimental data was shown by the RSM and LES methods with the modelling of the runner rotation by the sliding mesh method. In the regime under consideration, the precessing vortex rope is subject to instability, which leads to reconnection of its turns and the formation of an isolated vortex ring. Reconnection of the vortex core leads to aperiodic and intense pressure fluctuations recorded on the diffuser wall.


Sign in / Sign up

Export Citation Format

Share Document