scholarly journals VPP Coupling High-Fidelity Analyses and Analytical Formulations for Multihulls Sails and Appendages Optimization

2021 ◽  
Vol 9 (6) ◽  
pp. 607
Author(s):  
Ubaldo Cella ◽  
Francesco Salvadore ◽  
Raffaele Ponzini ◽  
Marco Evangelos Biancolini

A procedure for the optimization of a catamaran’s sail plan able to provide a preliminary optimal appendages configuration is described. The method integrates a sail parametric CAD model, an automatic computational domain generator and a Velocity Prediction Program (VPP) based on a combination of sail RANS computations and analytical models. The sailing speed and course angle are obtained, with an iterative process, solving the forces and moment equilibrium system of equations. Analytical formulations for the hull forces were developed and tuned against a matrix of CFD solutions. The appendages aerodynamic polars are estimated by applying preliminary design criteria from aerospace literature. The procedure permits us to find the combination of appendages configuration, rudders setting, sail planform, shape and trim that maximise the VMG (Velocity Made Good). Two versions of the sail analysis module were implemented: one adopting commercial software and one based on the use of only Open-Source codes. The solutions of the two modules were compared to evaluate advantages and limitations of the two approaches.

1987 ◽  
Author(s):  
Kart L. Kirkman

The velocity prediction program, VPP, appeared on the yachting scene about ten years ago and it now dominates design and sailing. Originally implemented as a handicapping tool under the Measurement Handicap System, now accepted internationally as IMS, it has seen widespread acceptance for many other uses, from design to tuning and racing. This capability means that it is productive, even necessary, for the typical sailor interested in good performance to understand how to apply a VPP to his activities. To do so requires an appreciation of how a VPP functions and how it is applied to practical sailing problems, such as sail selection or tactics. The paper presents a review of VPP fundamentals and then treats the following applications: - Sail selection and strategy for offshore yachts. - Tuning and optimization of all boats. It is the goal of the paper to impart a working understand­ing of the VPP to many sailors so that they can take advantage of the technology in their normal activities.


2007 ◽  
Author(s):  
Kai Graf ◽  
Marcus Pelz ◽  
Volker Bertram ◽  
H. Söding

A method for the prediction of seakeeping behaviour of sailing yachts has been developed. It is based on linear strip theory with some non-linear extensions. The method is capable to take into account heeling and yawing yacht hulls, yacht appendages and sails. The yacht's response amplitude operators (RAO) and added resistance in waves can be predicted for harmonic waves as well as for natural wave spectra. The method is used to study added resistance in seaways for ACC-V5 yachts of varying beam. Results are used for further VPP investigations. The AVPP velocity prediction program is used to study optimum length to beam ratio of the yachts depending on wind velocity and upwind to downwind weighting. This investigation is carried out for flat water conditions as well as for two typical wave spectra. The results show that taking into account added resistance in seaways has a strong impact on predicted performance of the yacht.


Author(s):  
Tom Gerhard ◽  
Michael Sturm ◽  
Thomas H. Carolus

State-of-the-art wind turbine performance prediction is mainly based on semi-analytical models, incorporating blade element momentum (BEM) analysis and empirical models. Full numerical simulation methods can yield the performance of a wind turbine without empirical assumptions. Inherent difficulties are the large computational domain required to capture all effects of the unbounded ambient flow field and the fact that the boundary layer on the blade may be transitional. A modified turbine design method in terms of the velocity triangles, Euler’s turbine equation and BEM is developed. Lift and drag coefficients are obtained from XFOIL, an open source 2D design and analysis tool for subcritical airfoils. A 3 m diameter horizontal axis wind turbine rotor was designed and manufactured. The flow field is predicted by means of a Reynolds-averaged Navier-Stokes simulation. Two turbulence models were utilized: (i) a standard k-ω-SST model, (ii) a laminar/turbulent transition model. The manufactured turbine is placed on the rooftop of the University of Siegen. Three wind anemometers and wind direction sensors are arranged around the turbine. The torque is derived from electric power and the rotational speed via a calibrated grid-connected generator. The agreement between the analytically and CFD-predicted kinematic quantities up- and downstream of the rotor disc is quite satisfactory. However, the blade section drag to lift ratio and hence the power coefficient vary with the turbulence model chosen. Moreover, the experimentally determined power coefficient is considerably lower as predicted by all methods. However, this conclusion is somewhat preliminary since the existing experimental data set needs to be extended.


2003 ◽  
Vol 2003 (194) ◽  
pp. 67-73
Author(s):  
Hiroshi Kobayashi ◽  
Takeshi Kinoshita

2021 ◽  
Vol 6 (01) ◽  
pp. 151-172
Author(s):  
Ubaldo Cella ◽  
Corrado Groth ◽  
Stefano Porziani ◽  
Alberto Clarich ◽  
Francesco Franchini ◽  
...  

Abstract The fluid dynamic design of hydrofoils involves most of the typical difficulties of aeronautical wings design with additional complexities related to the design of a device operating in a multiphase environment. For this reason, “high fidelity” analysis solvers should be, in general, adopted also in the preliminary design phase. In the case of modern fast foiling sailing yachts, the appendages accomplish both the task of lifting up the boat and to make possible upwind sailing by contributing balance to the sail side force and the heeling moment. Furthermore, their operative design conditions derive from the global equilibrium of forces and moments acting on the system which might vary in a very wide range of values. The result is a design problem defined by a large number of variables operating in a wide design space. In this scenario, the device performing in all conditions has to be identified as a trade-off among several conflicting requirements. One of the most efficient approaches to such a design challenge is to combine multi-objective optimization strategies with experienced aerodynamic design. This paper presents a numerical optimization procedure suitable for foiling multihulls. As a proof of concept, it reports, as an application, the foils design of an A-Class catamaran. The key point of the method is the combination of opportunely developed analytical models of the hull forces with high fidelity multiphase analyses in both upwind and downwind sailing conditions. The analytical formulations were tuned against a database of multiphase analyses of a reference demihull at several attitudes and displacements. An aspect that significantly contributes to both efficiency and robustness of the method is the approach adopted to the geometric parametrization of the foils which was implemented by a mesh morphing technique based on Radial Basis Functions.


2021 ◽  
Vol 6 (01) ◽  
pp. 1-20
Author(s):  
Paul Kerdraon ◽  
Boris Horel ◽  
Patrick Bot ◽  
Adrien Letourneur ◽  
David David Le Touzé

Dynamic Velocity Prediction Programs are taking an increasingly prominent role in high performance yacht design, as they allow to deal with seakeeping abilities and stability issues. Their validation is however often neglected for lack of time and data. This paper presents an experimental campaign carried out in the towing tank of the Ecole Centrale de Nantes, France, to validate the hull modeling in use in a previously presented Dynamic Velocity Prediction Program. Even though with foils, hulls are less frequently immersed, a reliable hull modeling is necessary to properly simulate the critical transient phases such as touchdowns and takeoffs. The model is a multihull float with a waterline length of 2.5 m. Measurements were made in head waves in both captive and semi-captive conditions (free to heave and pitch), with the model towed at constant yaw and speed. To get as close as possible to real sailing conditions, experiments were made at both zero and non-zero leeway angles, sweeping a wide range of speed values, with Froude numbers up to 1.2. Both linear and nonlinear wave conditions were studied in order to test the limits of the modeling approach, with wave steepness reaching up to 7% in captive conditions and 3.5% in semi-captive ones. The paper presents the design and methodology of the experiments, as well as comparisons of measured loads and motions with simulations. Loads are shown to be consistent, with a good representation of the sustained non-linearities. Pitch and heave motions depict an encouraging correlation which confirms that the modeling approach is valid.


1995 ◽  
Author(s):  
John W. Cane

The International Measurement System (IMS) uses a computerized velocity prediction program (VPP) to calculate the performance of a meas­ured hull and rig in winds from six to twenty knots, at any sailing angle. A regatta is scored by comparing a yacht's performance with pre­dictions of the VPP. The winner is the yacht whose performance, relative to its VPP predic­tions, is the best, compared to all other yachts in its class or division. This paper discusses different methods of malc­ing the comparison and accounting for various factors in the race such as wind shifts and cur­rent on the course. Decisions made by race man­agers and/or developers of scoring programs can significantly impact results. Illustrative examples show the effects that these decisions can have. In 1994 the number of data points available for use in scoring yachts in custom courses doubled. Alternative ways of using these data are illus­trated by application to a sample regatta.


2005 ◽  
Author(s):  
Frank DeBord ◽  
Harry Dunning

Over the past few years several advanced concepts have gained wider acceptance from owners of large racing yachts and organizers of major international events. Two of these concepts, water ballast and canting keels, were evaluated during the design of the maxZ86 yachts Pyewacket and Morning Glory. This paper presents the key design features of these large movable ballast racing yachts and compares their performance to conventional racing yachts of similar size. Comparisons include results of physical model tests, CFD analysis using a panel code, velocity prediction program modeling, and sailing data from the existing boats. These results are accompanied by physical explanations of the differences, and the special testing and analysis requirements for the movable-ballast configurations are detailed. Finally, some of the design issues unique to the movable-ballast concepts and design trade-offs are discussed.


2009 ◽  
Author(s):  
Brian Maskew ◽  
Frank DeBord

A coupled aerodynamic/structures approach is presented for predicting the flying shape and performance of yacht sails in upwind conditions. The method is incorporated in a flow simulation computer program, and is part of an ultimate objective for a simultaneous aeroelastic/hydro analysis in a Dynamic Velocity Prediction Program (DVPP), that will include a 6DOF motion solver, and at some point could include calculations in waves. The time-stepping aerodynamic module uses an advanced vortex lattice method for the sails and a panel method with special base separation treatment to represent the abovewater part of the hull and mast. A coupled inverse boundary layer analysis is applied on all surfaces including both sides of each sail membrane; this computes the skinfriction drag and the source displacement effects of the boundary layers and wakes, including bubble and leeside “trailing-edge” type separations. . At each step, the computed aerodynamic pressure and skin-friction loads are transferred to a coupled structures module that uses a network grid of tension “cords” in each sail membrane, each cord representing a collection of fiber “strings”. The solution of a structural equilibrium matrix provides the displacements needed to achieve balance between the aerodynamic and tension loads at each grid point as the shape iterations proceed. Details of the methodology used are presented and comparisons of predicted aerodynamic forces to wind tunnel results and an existing VPP sail model are provided. In addition, predictions are compared to some simple experiments to demonstrate the aerodynamic/structural coupling necessary to predict flying shape. Finally, an outline is given for incorporation of this methodology into the planned Dynamic Velocity Prediction Program.


1993 ◽  
Author(s):  
Jerome H. Milgram ◽  
Donald B. Peters ◽  
D. Noah Eckhouse

A sailing dynamometer with a 42% scale model of an International America's Cup Class rig is used to measure sail forces and moments in actual sailing conditions. The sailing dynamometer is a 35-foot boat containing an internal frame connected to the hull by six load cells configured to measure all the forces and moments between the frame and the hull. All sailing rig components are attached to the frame, so that the sail forces are measured. Sail shapes in use are determined by computer-interfaced video. Computational fluid dynamics performed on the measured shapes provides the induced drag. This allows the measured drag to be decomposed into induced and form-and-parasitic components, which is necessary for generating a mathematical sail force model for a velocity prediction program (VPP). It is shown that VPP results using these new sail force coefficients are in better agreement with actual performance than are VPP results based on traditional sail force coefficients.


Sign in / Sign up

Export Citation Format

Share Document