scholarly journals Diffraction and Radiation of Water Waves by a Heaving Absorber in Front of a Bottom-Mounted, V-shaped Breakwater of Infinite Length

2021 ◽  
Vol 9 (8) ◽  
pp. 833
Author(s):  
Dimitrios N. Konispoliatis ◽  
Spyridon A. Mavrakos

In the present study, the problems of diffraction and radiation of water waves by a cylindrical heaving wave energy converter (WEC) placed in front of a reflecting V-shaped vertical breakwater are formulated. The idea conceived is based on the possible exploitation of amplified scattered and reflected wave potentials originating from the presence of V-shaped breakwater, towards increasing the WEC’s wave power absorption due to the wave reflections. An analytical solution based on the method of images is developed in the context of linear water wave theory, taking into account the hydrodynamic interaction phenomena between the converter and the vertical wall. Numerical results are presented and discussed concerning the hydrodynamic forces on the absorber and its wave power efficiency for various examined parameters, namely, the breakwaters’ forming angle, the distance between the converter and the vertical walls and the wave heading angle. The results show that the amount of the harvested wave power by the WEC in front of the walls is amplified compared to the wave power absorbed by the same WEC in the open sea.

2021 ◽  
Vol 26 (2) ◽  
pp. 223-235
Author(s):  
Rupanwita Gayen ◽  
Sourav Gupta ◽  
Aloknath Chakrabarti

An alternative approach is proposed here to investigate the problem of scattering of surface water waves by a vertical permeable plate submerged in deep water within the framework of linear water wave theory. Using Havelock’s expansion of water wave potential, the associated boundary value problem is reduced to a second kind hypersingular integral equation of order 2. The unknown function of the hypersingular integral equation is expressed as a product of a suitable weight function and an unknown polynomial. The associated hypersingular integral of order 2 is evaluated by representing it as the derivative of a singular integral of the Cauchy type which is computed by employing an idea explained in Gakhov’s book [7]. The values of the reflection coefficient computed with the help of present method match exactly with the previous results available in the literature. The energy identity is derived using the Havelock’s theorems.


Author(s):  
Leonard Bezati ◽  
Shkelqim Hajrulla ◽  
Kristofor Lapa

Abstract: In this work we are interested in developing approximate models for water waves equation. We present the derivation of the new equations uses approximation of the phase velocity that arises in the linear water wave theory. We treat the (KdV) equation and similarly the C-H equation. Both of them describe unidirectional shallow water waves equation. At the same time, together with the (BBM) equation we propose, we provide the best approximation of the phase velocity for small wave numbers that can be obtained with second and third-order equations. We can extend the results of [3, 4].  A comparison between the methods is mentioned in this article. Key words:  C-H equation, KdV equation, approximation, water wave equation, numerical methods. --------------------------------------------------------------------------------------------------------------------- [3]. D. J. Benney, “Long non-linear waves in fluid flows,” Journal of Mathematical           Physics, vol. 45, pp. 52–63, 1966. View at Google Scholar · View at Zentralblatt MATH  [4]. Bezati, L., Hajrulla, S., & Hoxha, F. (2018). Finite Volume Methods for Non-Linear          Eqs. International Journal of Scientific Research and Management, 6(02), M-  2018. 


2009 ◽  
Vol 12 (18) ◽  
pp. 59-68
Author(s):  
Thao Danh Nguyen ◽  
Duy The Nguyen

This paper applies and develops a numerical model based on the two-dimensional vertical Navier-Stokes equations to simulate the temporal and spatial variations of wave parameters in front of vertical walls. A non-uniform grids system is performed in the numerical solution of the model by transforming a variable physical domain to a fixed computational domain. Through present model, beside some basic hydrodynamic problems of water waves such as wave profile and water particle velocities, standing wave pressures at the wall are examined. Numerical results of the present model are compared with laboratory data and with existing empirical and theoretical models. The comparisons show that the model can simulate reasonably the wave processes of the waves in front of vertical walls as well as the wave pressures on the wall.


Author(s):  
Ramnarayan Mondal ◽  
Ken Takagi

This study deals with oblique and normal water wave scattering by a fixed submerged body of rectangular cross section which is infinite in length and finite in width. The fluid domain is considered as infinite as well as semi-infinite in nature. The study is carried out under the assumption of small amplitude linear water wave theory. It is considered that the bottom has a step and the submerged body is considered in shallower water depth region. The velocity potential is derived using the eigenfunction expansion method. The unknown constants, which appear in the expansion formulae, are obtained using orthogonal relation along with the boundary conditions at the interfaces. The wave-induced hydrodynamic forces acting on the submerged body and vertical wall are computed for different geometrical parameters. The wave reflection coefficient and the free surface motion are also calculated to see the wave phenomena around the submerged body.


1985 ◽  
Vol 107 (1) ◽  
pp. 34-41
Author(s):  
M. Takagi ◽  
K. Saito ◽  
S. Nakamura

Based on the linear water wave theory, numerical simulations are carried out for motions in waves of a body moored by a nonlinear-type mooring system. Numerical results obtained by using the equation of motion described in the time domain with a convolution integral (C.I. method) are compared with those of the second-order linear differential equation with constant coefficients (C. C. method). These results are also compared with experimental values measured from the initial stage when the action of exciting forces starts and the validity of C.I. method is discussed.


Geophysics ◽  
1951 ◽  
Vol 16 (1) ◽  
pp. 63-80 ◽  
Author(s):  
Milton B. Dobrin

A non‐mathematical summary is presented of the published theories and observations on dispersion, i.e., variation of velocity with frequency, in surface waves from earthquakes and in waterborne waves from shallow‐water explosions. Two further instances are cited in which dispersion theory has been used in analyzing seismic data. In the seismic refraction survey of Bikini Atoll, information on the first 400 feet of sediments below the lagoon bottom could not be obtained from ground wave first arrival times because shot‐detector distances were too great. Dispersion in the water waves, however, gave data on speed variations in the bottom sediments which made possible inferences on the recent geological history of the atoll. Recent systematic observations on ground roll from explosions in shot holes have shown dispersion in the surface waves which is similar in many ways to that observed in Rayleigh waves from distant earthquakes. Classical wave theory attributes Rayleigh wave dispersion to the modification of the waves by a surface layer. In the case of earthquakes, this layer is the earth’s crust. In the case of waves from shot‐holes, it is the low‐speed weathered zone. A comparison of observed ground roll dispersion with theory shows qualitative agreement, but it brings out discrepancies attributable to the fact that neither the theory for liquids nor for conventional solids applies exactly to unconsolidated near‐surface rocks. Additional experimental and theoretical study of this type of surface wave dispersion may provide useful information on the properties of the surface zone and add to our knowledge of the mechanism by which ground roll is generated in seismic shooting.


1976 ◽  
Vol 1 (15) ◽  
pp. 154 ◽  
Author(s):  
Shoshichiro Nagai ◽  
Shohachi Kakuno

A box-type wave absorber, which is composed of a perforated vertical front-wall and a perforated, horizontal bottom-wall, has been proved by a number of experiments to show lower coefficients of reflection and more distinguished reduction of wave pressures than the perforated vertical- wall breakwater. A breakwater of composite-type, which is 1500 m long and to be built at a water depth of 10 to 11 m below the Datum Line in the Port of Osaka, is being designed to set this new type of wave absorber in the concrete caissons of the vertical-walls which is named "a slit-type breakwater". The typical cross-section of the breakwater and the advantages of the slit-type breakwater are presented herein.


1976 ◽  
Vol 1 (15) ◽  
pp. 45 ◽  
Author(s):  
Udo Berger ◽  
Soren Kohlhase

As under oblique wave approach water waves are reflected by a vertical wall, a wave branching effect (stem) develops normal to the reflecting wall. The waves progressing along the wall will steep up. The wave heights increase up to more than twice the incident wave height. The £jtudy has pointed out that this effect, which is usually called MACH-REFLECTION, is not to be taken as an analogy to gas dynamics, but should be interpreted as a diffraction problem.


2009 ◽  
Vol 131 (5) ◽  
Author(s):  
Wenjiang Wu ◽  
Chan Y. Ching

The effect of the top wall temperature on the laminar natural convection in air-filled rectangular cavities driven by a temperature difference across the vertical walls was investigated for three different aspect ratios of 0.5, 1.0, and 2.0. The temperature distributions along the heated vertical wall were measured, and the flow patterns in the cavities were visualized. The experiments were performed for a global Grashof number of approximately 1.8×108 and nondimensional top wall temperatures from 0.52 (insulated) to 1.42. As the top wall was heated, the flow separated from the top wall with an undulating flow region in the corner of the cavity, which resulted in a nonuniformity in the temperature profiles in this region. The location and extent of the undulation in the flow are primarily determined by the top wall temperature and nearly independent of the aspect ratio of the cavity. The local Nusselt number was correlated with the local Rayleigh number for all three cavities in the form of Nu=C⋅Ran, but the values of the constants C and n changed with the aspect ratio.


Author(s):  
T S Jang

Abstract This paper concerns constructing a semi-analytic solution procedure for integrating the fully non-linear Serre equations (or 1D Green–Naghdi equations for constant water depth). The validity of the solution procedure is checked by investigating a moving solitary wave for which the analytical solution is known. The semi-analytic procedure constructed in this study is confirmed to be good at observing non-linear wave phenomena of the collision of a sufficiently high-amplitude solitary wave with a vertical wall. The simulated results are in a good agreement with data of other authors. Further, the procedure simulates the non-linear interaction of four solitary waves, which enables us to investigate the repeated reflection of a single solitary wave between two vertical walls.


Sign in / Sign up

Export Citation Format

Share Document