scholarly journals Optimal Energy Control of Battery Hybrid System for Marine Vessels by Applying Neural Network Based on Equivalent Consumption Minimization Strategy

2021 ◽  
Vol 9 (11) ◽  
pp. 1228
Author(s):  
Seongwan Kim ◽  
Jongsu Kim

This paper introduces an optimal energy control method whose rule-based control employs the equivalent consumption minimization strategy as the design standard to support a neural network technique. Using the proposed control method, the output command values for each power source based on the load of the ship and the state of charge of the battery satisfy the target of energy optimization. Based on the rules, the load of the ship and the state of charge of the battery were the input in the neural network, and the outputs of two generators were recorded as the output values of the neural network. To optimize the weights of the neural network and reduce the error between the predicted values and results, the Bayesian regularization method was employed, and a single hidden layer with 20 nodes, 2 input layers, and 2 output layers were considered. For the hidden layer, the tansigmoid function was applied, and for the activation functions of the output layers, linear functions were adopted considering the correlation between the input and output data used for training the neural network. The propulsion motor was fitted with a speed controller to ensure a stable speed, and a torque load was applied on the propulsion motor. To verify the accuracy of the neural network learning, a generator–battery hybrid system simulation was conducted using MATLAB Simulink, and the neural network learned values were compared with the generator output command values obtained based on the load of the ship and the battery state of charge. Additionally, it was confirmed that the generator command values were consistent with the neural network learned values, and the stability of the system was maintained by controlling the speed, voltage, and current control of the propulsion motor under various loads of the ship and different battery charge statuses.

Author(s):  
Dauda Duncan ◽  
Adamu Murtala Zungeru ◽  
Mmoloki Mangwala ◽  
Bakary Diarra ◽  
Joseph Chuma ◽  
...  

Estimating the state-of-charge of a lead-acid battery at remote seismic nodes is a key factor in managing the available power. Optimal management enables the continuous acquisition of seismic data of an area. This paper presents the management of lead-acid batteries at remote seismic nodes, using the Neural Network model's historical data to estimate the battery's state-of-charge. Powersim (PSIM) simulation tool was used to implement photovoltaic energy harvesting system with a buck mode converter and maximum power point tracking algorithm to acquire historical data. A backpropagation neural network technique for training the historical dataset of hourly points in 500 days on the Matlab platform is adopted, and a feedforward neural network is employed due to the irregularities of the input data. The neural network model's hidden layer contains the transfer function of the Tansig Function to produce the model output of state-of-charge estimations. Besides, this paper is based on the management of estimating the state-of-charge of the lead-acid battery near-realtime instead of relying on the vendor's lifecycle information. The simulated results show the simplicity and optimal estimations of state-of-charge of the lead-acid battery with RMSE of 0.023%.


Author(s):  
Thang Nguyen Trong

<span lang="EN-US">This research aims to propose the optimal control method combined with the neuron network for an induction motor. In the proposed system, the induction motor is a nonlinear object which is controlled at each working point. At these working-points, the state equation of the induction motor is linear, so it is possible to apply the linear quadratic regular algorithm for the induction motor. Therefore, the parameters of the state feedback controller are the functions. The output-input relationships of these functions are set through the neural network. The numerical simulation results show that the quality of the control system of the induction motor is very high: The response speed always follows the desired speed with the short transition time and the small overshoot. Furthermore, the system is robust in the case of changing the load torque, and the parameters of the induction motor are incorrectly defined</span>


2020 ◽  
Vol 27 (3) ◽  
pp. 100-108
Author(s):  
Pan Geng ◽  
Xiaoyan Xu ◽  
Tomasz Tarasiuk

AbstractAll-electric ships (AES) are considered an effective solution for reducing greenhouse gas emissions as they are a platform to use clean energy sources such as lithium-ion batteries, fuel cells and solar cells instead of fossil fuel. Even though these batteries are a promising alternative, the accuracy of the battery state of charge (SOC) estimation is a critical factor for their safe and reliable operation. The SOC is a key indicator of battery residual capacity. Its estimation can effectively prevent battery over-discharge and over-charge. Next, this enables reliable estimation of the operation time of fully electric ferries, where little time is spent at the harbour, with limited time available for charging. Thus, battery management systems are essential. This paper presents a neural network model of battery SOC estimation, using a long short-term memory (LSTM) recurrent neural network (RNN) as a method for accurate estimation of the SOC in lithium-ion batteries. The current, voltage and surface temperature of the batteries are used as the inputs of the neural network. The influence of different numbers of neurons in the neural network’s hidden layer on the estimation error is analysed, and the estimation error of the neural network under different training times is compared. In addition, the hidden layer is varied from 1 to 3 layers of the LSTM nucleus and the SOC estimation error is analysed. The results show that the maximum absolute SOC estimation error of the LSTM RNN is 1.96% and the root mean square error is 0.986%, which validates the feasibility of the method.


2013 ◽  
Vol 718-720 ◽  
pp. 1961-1966
Author(s):  
Hong Sheng Xu ◽  
Qing Tan

Electronic commerce recommendation system can effectively retain user, prevent users from erosion, and improve e-commerce system sales. BP neural network using iterative operation, solving the weights of the neural network and close values to corresponding network process of learning and memory, to join the hidden layer nodes of the optimization problem of adjustable parameters increase. Ontology learning is the use of machine learning and statistical techniques, with automatic or semi-automatic way, from the existing data resources and obtaining desired body. The paper presents building electronic commerce recommendation system based on ontology learning and BP neural network. Experimental results show that the proposed algorithm has high efficiency.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Michael Cordes ◽  
Theresa Ida Götz ◽  
Elmar Wolfgang Lang ◽  
Stephan Coerper ◽  
Torsten Kuwert ◽  
...  

Abstract Background Ultrasound is the first-line imaging modality for detection and classification of thyroid nodules. Certain characteristics observable by ultrasound have recently been identified that may indicate malignancy. This retrospective cohort study was conducted to test the hypothesis that advanced thyroid carcinomas show distinctive clinical and sonographic characteristics. Using a neural network model as proof of concept, nine clinical/sonographic features served as input. Methods All 96 study enrollees had histologically confirmed thyroid carcinomas, categorized (n = 32, each) as follows: group 1, advanced carcinoma (ADV) marked by local invasion or distant metastasis; group 2, non-advanced papillary carcinoma (PTC); or group 3, non-advanced follicular carcinoma (FTC). Preoperative ultrasound profiles were obtained via standardized protocols. The neural network had nine input neurons and one hidden layer. Results Mean age and the number of male patients in group 1 were significantly higher compared with groups 2 (p = 0.005) or 3 (p <  0.001). On ultrasound, tumors of larger volume and irregular shape were observed significantly more often in group 1 compared with groups 2 (p <  0.001) or 3 (p ≤ 0.01). Network accuracy in discriminating advanced vs. non-advanced tumors was 84.4% (95% confidence interval [CI]: 75.5–91), with positive and negative predictive values of 87.1% (95% CI: 70.2–96.4) and 92.3% (95% CI: 83.0–97.5), respectively. Conclusions Our study has shown some evidence that advanced thyroid tumors demonstrate distinctive clinical and sonographic characteristics. Further prospective investigations with larger numbers of patients and multicenter design should be carried out to show whether a neural network incorporating these features may be an asset, helping to classify malignancies of the thyroid gland.


2006 ◽  
Vol 315-316 ◽  
pp. 85-89
Author(s):  
S. Jiang ◽  
Yan Shen Xu ◽  
J. Wu

To improve the cutting efficiency, one of key approaches is to control with constant force in the full depth working condition. And the controller design is vital to realize the real-time feasibility and robustness of the system. A neuron optimization based PID approach is proposed in this paper and adopted in the NC cutting process. This approach optimizes the parameters of PID controller real-timely with the neural network control principle. It not only overcomes the mismatch of the open-loop system model which occurred in constant PID control, but also solves the contradiction between the calculation speed and precision in the neural network which caused by the node choosing of the hidden layer. At last, the simulation has been carried out on a NC milling machine to prove the validity and effectiveness of the proposed approach.


2011 ◽  
Vol 66-68 ◽  
pp. 583-587 ◽  
Author(s):  
Jian Xiong Long

In order to effectively achieve MH-Ni battery state of charge estimation, grey system neural network model is put forward to predict battery state of charge by using the parameters of battery pulse current response signal as input for grey system neural network. The state of charge is as the network output and the response parameters of the battery pulse current as the input. The results show that its prediction accuracy of the state of charge can be achieved to requirements of the electric vehicles in applications by this method to predict the state of charge.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5115
Author(s):  
Xiongchao Lin ◽  
Wenshuai Xi ◽  
Jinze Dai ◽  
Caihong Wang ◽  
Yonggang Wang

Molten gasification is considered as a promising technology for the processing and safe disposal of hazardous wastes. During this process, the organic components are completely converted while the hazardous materials are safely embedded in slag via the fusion-solidification-vitrification transformation. Ideally, the slag should be glassy with low viscosity to ensure the effective immobilization and steady discharge of hazardous materials. However, it is very difficult to predict the characteristics of slag using existing empirical equations or conventional mathematical methods, due to the complex non-linear relationship among the phase transformation, vitrification transition and chemical composition of slag. Equipped with a strong nonlinear mapping ability, an artificial neural network may be able to predict the properties of slags if a large amount of data is available for training. In this work, over 10,000 experimental data points were used to train and develop a slag classification model (glassy vs. non-glassy) based on a neural network. The optimal structure of the neural network was figured out and validated. The results suggest that the classification accuracy for the independent test samples reached 93.3%. Using 1 and 0 as model inputs to represent mildly reducing and inert atmospheres, a double hidden layer structure in the neural network enabled the accurate classification of slags under various atmospheres. Furthermore, the neural network for the prediction of glassy slag viscosity was optimized; it featured a double hidden layer structure. Under a mildly reducing atmosphere, the absolute error from the independent test data was generally within 4 Pa·s. By adding a gas atmosphere into the input of the neural network using a simple normalization method, a multi-atmosphere slag viscosity prediction model was developed. Said model is much more accurate than its counterpart that does not consider the effect of the atmosphere. In summary, the artificial neural network proved to be an effective approach to predicting the slag properties under different atmospheres. The data-driven models developed in this work are expected to facilitate the commercial deployment of molten gasification technology.


Sign in / Sign up

Export Citation Format

Share Document