scholarly journals Analysis of Internal Flow Characteristics of a Startup Pump Turbine at the Lowest Head under No-Load Conditions

2021 ◽  
Vol 9 (12) ◽  
pp. 1360
Author(s):  
Wei Wang ◽  
Xi Wang ◽  
Zhengwei Wang ◽  
Mabing Ni ◽  
Chunan Yang

The instability of the no-load working condition of the pump turbine directly affects the grid connection of the unit, and will cause vibration and damage to the components of the unit in severe cases. In this paper, a three-dimensional full flow numerical model including the runner gap and the pressure-balance pipe was established. The method SST k-ω model was used to predict the internal flow characteristics of the pump turbine. The pressure pulsation of the runner under different operating conditions during the no-load process was compared. Because the rotation speed, flow rate, and guide vane opening of the unit change in a small range during the no-load process, the pressure pulsation characteristics of the runner are basically the same. Therefore, a working condition was selected to analyze the transient characteristics of the flow field, and it was found that there was a high-speed ring in the vaneless zone, and a stable channel vortex was generated in the runner flow passage. Analyzing the axial water thrust of each part of the runner, it was found that the axial water thrust of the runner gap was much larger than the axial water thrust of the runner blades, and it changed with time periodically. It was affected by rotor stator interaction. The main frequency was expressed as a multiple of the number of guide vanes, that is, vanes passing frequency, 22fn. During the entire no-load process, the axial water thrust of the runner changed slowly with time and fluctuated slightly.

Author(s):  
Chao Liu ◽  
Hongxun Chen ◽  
Zheng Ma

Waterjet propulsion has many advantages when operating at high-speed conditions. As a special way of navigation, it is mostly used in high-speed ships and shallow draft ships. In this paper, a mixed-flow waterjet pump was taken as the research object. For the two cases of non-uniform inflow and uniform inflow, a modified RANS/LES method was adopted for unsteady calculation of the whole channel, aiming at investigating the influence mechanism of the non-uniform inflow on the energy performance and pressure pulsation characteristics of the waterjet pump. The hydrodynamic characteristics of the waterjet pump were comprehensively analyzed such as head, efficiency, axial-force, internal flow and pressure pulsation. It is found that the non-uniform inflow will reduce the external characteristics of the waterjet pump and lead to the huge fluctuation of energy performance with time. Low-speed swirls occur locally in the intake duct for non-uniform inflow, in which condition the vorticity is much higher than that for uniform inflow. In terms of the low-speed area, [Formula: see text] and [Formula: see text], the values under non-uniform inflow condition are generally larger than those under uniform flow condition when in the impeller and guide vane zone. The dominant frequencies of pressure pulsation are, respectively, [Formula: see text], 7[Formula: see text] and 4[Formula: see text] in the intake duct, impeller and diffuser, which are almost consitent for the two cases. However, the frequency features are more diverse, and the amplitudes corresponding to the same frequencies are more intense for non-uniform inflow.


2020 ◽  
Author(s):  
Demin Liu ◽  
Yongzhi Zhao ◽  
Weilin Xu

Abstract Pump turbine operating conditions are complex, mainly including turbine mode and pump mode. Pump turbines have various instability problems during operation, such as S-shaped, pump hump, pressure pulsation and cavitation. PIV (Particle Image Velocimetry) is a very effective test technique for the internal flow field observation of pump turbines. In this paper, the internal flow field of pump hump, cavitation, pressure pulsation and four quadrants of the pump turbine are tested by PIV technology. The experimental observations show that the internal flow on those unstable working conditions of the pump turbine is extremely complicated. Those conditions which the vortex separation is serious and the flow angle is changed is far away the best efficiency working condition. Since the operating condition deviates from the optimal operating condition, the inflow Angle is changed and the inflow Angle is far away from the optimal inflow Angle.And the vortex induces and develops strongly by PIV test. The flow phenomenon are demonstrated at each operating points by PIV test.


Author(s):  
Xianfang Wu ◽  
Heyu Ye ◽  
Minggao Tan ◽  
Houlin Liu

Abstract To study the internal flow characteristics of the photovoltaic pump under the transient change of the solar radiation, the simulation algorithm of the photovoltaic pump system was established by MATLAB/Simulink and CFD for the first time and the results were validated by the test. Firstly, the change rule of pump flow rate and rotation speed under transient solar radiation was obtained by Simulink. Then the results of the change rule were transformed into the boundary condition of CFD by CEL function and the transient flow field in the photovoltaic pump was obtained. The internal flow characteristics and pressure pulsation in the pump were analyzed when the solar radiation increases or decreases transiently. The results demonstrate that the numerical calculation can provide accurate prediction for the characteristics of internal flow in the pump. The numerical results are closed to experimental results, the minimum error of pressure is 0.93% and the maximum error is 1.78%. When the solar radiation increases transiently, the low pressure area at the impeller inlet gets larger obviously and the jet-wake at the impeller outlet becomes more obvious. The pressure pulsation in impeller gradually increases and becomes stable after 0.6 s. The pressure from the impeller outlet to guide vane outlet is stable at 123 kPa. When the solar radiation decreases transiently, the pressure in the impeller takes 1.6 s to be stable. Larger pressure pulsation occurs from the impeller outlet to the guide vane inlet and the maximum differential pressure is 10 kPa. Compared with the transient increase of solar radiation, the pressure in the impeller takes more 0.2 s to stabilize when the solar radiation transient decreases. Meanwhile, the results in this paper can provide references for other transient characteristics research.


2016 ◽  
Vol 33 (2) ◽  
Author(s):  
Yexiang Xiao ◽  
Wei Zhu ◽  
Zhengwei Wang ◽  
jin zhang ◽  
Chongji Zeng ◽  
...  

Purpose Numerically analyzed the flow characteristic and explored the hydrodynamic mechanism of the S-shaped region formation of a Francis pump-turbine. Design/methodology/approach Three-dimensional steady and unsteady simulations were performed for a number of operating conditions at the optimal guide vanes opening. The steady Reynolds averaged Navier-Stokes equations with the SST turbulence model were solved to model the internal flow within the entire flow passage. The predicted discharge-speed curve agrees well with the model test at generating mode. This paper compared the hydrodynamic characteristics of for off-design cases in S-shaped region with the optimal operating case, and more analysis focuses particularly on very low positive and negative discharge cases with the same unit speed. Findings At runaway case towards smaller discharge, the relative circumferential velocity becomes stronger in the vaneless, which generates the “water ring” and blocks the flow between guide vane and runner. The runner inlet attack angle becomes larger, and the runner blade passages nearly filled with flow separation and vortexes. The deterioration of runner blade flow leads to the dramatic decrease of runner torque, which tends to reduce the runner rotation speed. In this situation, the internal flow can’t maintain the larger rotating speed at very low positive discharge cases, so the unit discharge-speed curves bend to S-shaped near runaway case. Originality/value The analysis method of four off-design cases on S-shaped region with the comparison of optimal operation case and the calculated attack angles are adopted to explore the mechanism of S characteristic. The flow characteristic and quantitative analysis all explain the bending of the unit discharge-speed curves.


Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 959
Author(s):  
Weijie Zhang ◽  
Jianping Yuan ◽  
Qiaorui Si ◽  
Yanxia Fu

Cross-flow fans are widely used in numerous applications such as low-pressure ventilation, household appliances, laser instruments, and air-conditioning equipment. Cross-flow fans have superior characteristics, including simple structure, small size, stable airflow, high dynamic pressure coefficient, and low noise. In the present study, numerical simulation and experimental research were carried out to study the unique secondary flow and eccentric vortex flow characteristics of the internal flow field in multi-operating conditions. To this end the vorticity and the circumferential pressure distribution in the air duct are obtained based on the performed experiments and the correlation between spectral characteristics of multiple operating conditions and the inflow state is established. The obtained results show that when the area of the airflow passage decreases while the area of the eccentric vortex area gradually increases, then the airflow of the cross-flow fan decreases, the outlet expands, and the flow pattern uniformity reduces. It was found that wakes form in the vicinity of the blade and the tail of the volute tongue, which generate pressure pulsation, and aerodynamic noise. The pressure distribution along the inner circumference shows that the total minimum pressure appears in the eccentric vortex near the volute tongue and the volute returns near the zone. Moreover, it was found that the total pressure near the eccentric vortex is significantly smaller than that of the main flow zone. As the flow rate decreases, the pressure pulsation amplitude of the eccentric vortex region significantly increases, while the static and total pressure pulsation amplitudes are gradually increased. Close to the eccentric vortex on the inner side of the blade in the volute tongue area, total pressure is low, total pressure on the outside of the blade is not affected, and pressure difference between the inner and outer sides is large. When the flow rate of the cross-flow fan is 0.4 Qd, there is no obvious peak at the harmonic frequency of the blade passage frequency. This shows that the aerodynamic noise is caused by the main unstable flow.


Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 949 ◽  
Author(s):  
Yan Jin ◽  
Xiaoke He ◽  
Ye Zhang ◽  
Shanshan Zhou ◽  
Hongcheng Chen ◽  
...  

This paper presents an investigation of external flow characteristics and pressure fluctuation of a submersible tubular pumping system by using a combination of numerical simulation and experimental methods. The steady numerical simulation is used to predicted the hydraulic performance of the pumping system, and the unsteady calculation is adopted to simulate the pressure fluctuation in different components of a submersible tubular pumping system. A test bench for a model test and pressure pulsation measurement is built to validate the numerical simulation. The results show that the performance curves of the calculation and experiment are in agreement with each other, especially in the high efficiency area, and the deviation is minor under small discharge and large discharge conditions. The pressure pulsation distributions of different flow components, such as the impeller outlet, middle of the guide vane, and guide vane outlet and bulb unit, are basically the same as the measurement data. For the monitoring points on the impeller and the wall of the guide vane especially, the main frequency and its amplitude matching degree are higher, while the pressure pulsation values on the wall of the bulb unit are quite different. The blade passing frequency and its multiples are important parameters for analysis of pressure pulsation; the strongest pressure fluctuation intensity appears in the impeller outlet, which is mainly caused by the rotor–stator interaction. The farther the measuring point from the impeller, the less the pressure pulsation is affected by the blade frequency. The frequency amplitudes decrease from the impeller exit to the bulb unit.


Author(s):  
Sung Yong Jung ◽  
Young Uk Min ◽  
Kyung Lok Lee

The performance characteristics of the radial pump commonly used as a multistage (8 or 10 stage) pump have been investigated experimentally. Due to the complex three-dimensional geometries, the hydraulic performance of multistage pumps is closely related to the internal flows in diffuser and return vanes. In order to investigate the flow characteristics in these regions by Particle Image Velocimetry (PIV) technique, a transparent pump is designed. A 532 nm continuous laser and a high-speed camera are used as a light source and an image acquisition device, respectively. The velocity field information in a diffuser of the radial pump is successfully obtained by two-dimensional PIV measurements at various operating conditions.


Author(s):  
Seung-Jun Kim ◽  
Jin-Hyuk Kim ◽  
Young-Seok Choi ◽  
Yong Cho ◽  
Jong-Woong Choi

Abstract This study presents the numerical analysis on the inter-blade vortex characteristics along with the blockage effects of runner blade in a Francis hydro turbine model with various flow rate conditions. The turbine model showed different flow characteristics in the runner blade passages according to operating conditions, and inter-blade vortex was observed at lower flow rate conditions. This inter-blade vortex can lead to performance reduction, vibration, and instability for smooth operation of turbine systems. The previous study on blockage effects on various runner blade thickness, showed its influence on hydraulic performance and internal flow characteristics at low flow rate conditions. Therefore, the inter-blade vortex characteristics can be altered with the blockage effects at low flow rate conditions in a Francis hydro-turbine. For investigating the internal flow and unsteady pressure characteristics, three-dimensional steady and unsteady Reynolds-averaged Navier-Stokes calculations are performed. These inter-blade vortices were captured at the leading and trailing edges close to the runner hub. These vortex regions showed flow separation and stagnation flow while blockage effects contributed for decreasing the inter-blade vortex at low flow rate conditions.


Author(s):  
Young-Seok Choi ◽  
Yong-In Kim ◽  
Sung Kim ◽  
Seul-Gi Lee ◽  
Hyeon-Mo Yang ◽  
...  

Abstract This paper describes the numerical optimization of an axial fan focused on the blade and guide vane (GV). For numerical analysis, three-dimensional (3D) steady-state Reynolds-averaged Navier-Stokes (RANS) equations with the shear stress transport (SST) turbulence model are discretized by the finite volume method (FVM). The objective function is enhancement of aerodynamic performance with specified total pressure. To select the design variables which have main effect to the objective function, 2k factorial design is employed as a method for design of experiment (DOE). In addition, response surface method (RSM) based on the central composite design applied to carry out the single-objective optimization. Effects on the components such as bell mouth and hub cap are considered with previous analysis. The internal flow characteristics between base and optimized model are analyzed and discussed.


Sign in / Sign up

Export Citation Format

Share Document