scholarly journals Observations of Suspended Particulate Matter Concentrations and Particle Size Distributions within a Macrotidal Estuary (Port Curtis Estuary, Australia)

2021 ◽  
Vol 9 (12) ◽  
pp. 1385
Author(s):  
Ryan J. K. Dunn ◽  
Jordan Glen ◽  
Hsin-Hui Lin ◽  
Sasha Zigic

An understanding of suspended particulate matter (SPM) dynamics is of great importance to design awareness and management strategies of estuaries. Using a Laser In Situ Scattering and Transmissiometry (LISST) instrument, variations in suspended particle size volumetric concentrations (VC) and particle size distributions (PSD) were measured at six sites within Port Curtis estuary (Australia). The port is a macrotidal estuary with significant economic and environmental importance. Observed VC and SPM sizes demonstrated spatial and temporal trends strongly controlled by the variable energy conditions operating on the neap and spring cycle timescale, with a clear trend towards increasing concentrations and decreasing SPM sizes with increasing tidal ranges. Mid-estuary sites were characterized by the greatest depth-averaged VC under transitional and spring conditions. Estuary-wide mean spring tide total water profile concentrations revealed a near 300% increase in comparison to neap tide condition concentrations. In the upper-estuary sites the mean contribution of the combined 2.5–35 µm size classes to the total profile PSDs was greatest during all tidal conditions, whilst within the lower-estuary site the combined 35–130 µm size classes were greatest. Mean contributions of the largest size class (300–500 µm) dominated surface-waters throughout the estuary during the neap tide period, which when compared with the transitional and spring tide conditions, demonstrated changes of −82% to −48% and −82% to −40%, respectively. Overall, the results from this case study provides further evidence of the important influence of neap and spring tidal regimes on SPM dynamics within estuarine settings and the need to observe parameter dynamics on such timescales.

1998 ◽  
Vol 38 (6) ◽  
pp. 327-335
Author(s):  
Yasunori Kozuki ◽  
Yoshihiko Hosoi ◽  
Hitoshi Murakami ◽  
Katuhiro Kawamoto

In order to clarify the origin and behavior of suspended particulate matter (SPM) in a tidal river, variation of SPM in a tidal river was investigated with regard to its size and constituents. SPM was separated into three groups according to size. Change of contents of titanium and organic substances of each group of SPM was examined. SPM which was discharged by run-off was transported with decomposition and sedimentation in a tidal river. Concentration of SPM with a particle size greater than 0.45 μm increased due to resuspension in a tidal river. Origin of SPM with a size of less than 0.45 μm at upstream areas was from natural soil and most of such SPM which had been transported settled near a river mouth. It was determined from examination of the CN ratio and the ratio of the number of attached bacteria to free bacteria that SPM with a size greater than 1.0 μm at upstream areas was decomposing intensively. At the downstream areas, SPM with a size of less than 0.45 μm came from the sea. SPM with particle size greater than 1.0 μm consisted of plankton and substances which were decomposed sufficiently while flowing.


2021 ◽  
Author(s):  
Yiting Nan ◽  
Peiyong Guo ◽  
Hui Xing ◽  
Sijia Chen ◽  
Bo Hu ◽  
...  

Abstract The effects of different concentrations (100,150,200,250 mg/L) and different particle sizes (0–75µm, 75–120µm, 120–150µm, 150–500µm) on soluble protein content, SOD and CAT activity, MDA content, chlorophyll a content and photosynthetic parameters of Microcystis flos-aquae were studied, the mechanism of the effect of suspended particulate matter on the physiology and biochemistry of Microcystis flos-aquae was discussed. The results showed that the soluble protein content of Microcystis flos-aquae did not change obviously after being stressed by suspended particles of different concentration/diameter. The SOD activity of Microcystis flos-aquae increased at first and then decreased with the increase of the concentration of suspended particulate matter. The SOD activity of Microcystis flos-aquae reached 28.03 U/mL when the concentration of suspended particulate matter was 100 mg/L. The CAT activity of Microcystis flos-aquae increased with the increase of the concentration of suspended particles, and reached the maximum value of 12.45 U/mgprot in the concentration group of 250 mg/L, showing a certain dose-effect. The effect of small particle size on SOD, CAT and MDA of Microcystis flos-aquae was more significant than that of large particle size. The larger the concentration and the smaller the particle size, the stronger the attenuation of light and the lower the content of chlorophyll a. Both Fv/Fm and Fv/F0 of Microcystis flos-aquae increased at first and then decreased under different concentration/size of suspended particles. The relative electron transfer rate gradually returned to the normal level with the passage of time. There was no significant difference in α value between treatment group and control group, ETRmax and Ik decreased.


2019 ◽  
Vol 62 (2) ◽  
pp. 415-427 ◽  
Author(s):  
Reyna M. Knight ◽  
Xinjie Tong ◽  
Zhenyu Liu ◽  
Sewoon Hong ◽  
Lingying Zhao

Abstract. Poultry layer houses are a significant source of particulate matter (PM) emissions, which potentially affect worker and animal health. Particulate matter characteristics, such as concentration and size distribution inside layer houses, are critical information for assessment of the potential health risks and development of effective PM mitigation technologies. However, this information and its spatial and seasonal variations are lacking for typical layer facilities. In this study, two TSI DustTrak monitors (DRX 8533) and an Aerodynamic Particle Sizer (APS 3321) were used to measure PM mass concentrations and number-weighted particle size distributions in two typical manure-belt poultry layer houses in Ohio in three seasons: summer, autumn, and winter. Bimodal particle size distributions were consistently observed. The average count median diameters (mean ±SD) were 1.68 ±0.25, 2.16 ±0.31, and 1.87 ±0.07 µm in summer, autumn, and winter, respectively. The average geometric standard deviations of particle size were 2.16 ±0.23, 2.16 ±0.18, and 1.74 ±0.17 in the three seasons, respectively. The average mass concentrations were 67.4 ±54.9, 289.9 ±216.2, and 428.1 ±269.9 µg m-3 for PM2.5; 73.6 ±59.5, 314.6 ±228.9, and 480.8 ±306.5 µg m-3 for PM4; and 118.8 ±99.6, 532.5 ±353.0, and 686.2 ±417.7 µg m-3 for PM10 in the three seasons, respectively. Both statistically significant (p < 0.05) and practically significant (difference of means >20% of smaller value) seasonal variations were observed. Spatial variations were only practically significant for autumn mass concentrations, likely due to external dust infiltration from nearby agricultural activities. The OSHA-mandated permissible exposure limit for respirable PM was not exceeded in any season. Keywords: Air quality, Particulate matter, Poultry housing, Seasonal variation, Spatial variation.


2010 ◽  
Vol 58 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Carlos Augusto França Schettini ◽  
Luiz Bruner de Miranda

The circulation and transport of suspended particulate matter in the Caravelas Estuary are assessed. Nearly-synoptic hourly hydrographic, current (ADCP velocity and volume transport) and suspended particulate matter data were collected during a full semidiurnal spring tide, on the two transects Boca do Tomba and Barra Velha and on longitudinal sections at low and high tide. On the first transect the peak ebb currents (-1.5 ms-1) were almost twice as strong as those of the wider and shallow Barra Velha inlet (-0.80 ms-1) and the peak flood currents were 0.75 and 0.60 ms-1, respectively. Due to the strong tidal currents both inlets had weak vertical salinity stratification and were classified with the Stratification-circulation Diagram as Type 2a (partially mixed-weakly stratified) and Type 1a (well mixed). Volume transports were very close, ranging from -3,500 to 3,100 m³s-1 at the ebb and flood, respectively, with a residual -630 m³s-1. The concentration of the suspended particulate matter was closely related to the tidal variation and decreased landwards from 50 mg.L-1 at the estuary mouth, to 10 mg.L-1 at distances of 9 and 16 km for the low and high tide experiments, respectively. The total residual SPM transport was out of the estuary at rates of -18 tons per tidal cycle.


2021 ◽  
Author(s):  
Violaine Piton ◽  
Frédéric Soulignac ◽  
Ulrich Lemmin ◽  
Graf Benjamin ◽  
Htet Kyi Wynn ◽  
...  

<p>River inflows have a major influence on lake water quality through their input of sediments, nutrients and contaminants. It is therefore essential to determine their pathways, their mixing with ambient waters and the amount and type of Suspended Particulate Matter (SPM) they carry. Two field campaigns during the stratified period took place in Lake Geneva, Switzerland, in the vicinity of the Rhône River plume, at high and intermediate river discharge. Currents, water and sediment fluxes, temperature, turbidity and particle size distribution were measured along three circular transects located at 400, 800 and 1500 m in front of the river mouth. During the surveys, the lake was thermally stratified, the negatively buoyant Rhône River plume plunged and intruded into the metalimnion as an interflow and flowed out in the streamwise direction. Along the pathway, interflow core velocities, SPM concentrations and volumes of particles progressively decreased with the distance from the mouth (by 2-3 times), while interflow cross sections and plume volume increased by 2-3 times due to entrainment of ambient water. The characteristics of the river outflow determined the characteristics of the interflows: i.e. interflow fluxes and concentrations were the highest at high discharge. Both sediment settling and interflow dilution contributed to the observed decrease of sediment discharge with distance from the mouth. The particle size distribution of the interflow was dominated by fine particles (<32 μm), which were transported up to 1500 m away from the mouth and most likely beyond, while large particles (>62 μm) have almost completely settled out before reaching 1500 m. </p>


Sign in / Sign up

Export Citation Format

Share Document