scholarly journals The ‘Amoeboid Predator-Fungal Animal Virulence’ Hypothesis

2019 ◽  
Vol 5 (1) ◽  
pp. 10 ◽  
Author(s):  
Arturo Casadevall ◽  
Man Fu ◽  
Allan Guimaraes ◽  
Patricia Albuquerque

The observation that some aspects of amoeba-fungal interactions resemble animal phagocytic cell-fungal interactions, together with the finding that amoeba passage can enhance the virulence of some pathogenic fungi, has stimulated interest in the amoeba as a model system for the study of fungal virulence. Amoeba provide a relatively easy and cheap model system where multiple variables can be controlled for the study of fungi-protozoal (amoeba) interactions. Consequently, there have been significant efforts to study fungal–amoeba interactions in the laboratory, which have already provided new insights into the origin of fungal virulence as well as suggested new avenues for experimentation. In this essay we review the available literature, which highlights the varied nature of amoeba-fungal interactions and suggests some unsolved questions that are potential areas for future investigation. Overall, results from multiple independent groups support the ‘amoeboid predator–fungal animal virulence hypothesis’, which posits that fungal cell predation by amoeba can select for traits that also function during animal infection to promote their survival and thus contribute to virulence.

2015 ◽  
Vol 28 (11) ◽  
pp. 1181-1197 ◽  
Author(s):  
M. G. Malmierca ◽  
S. P. McCormick ◽  
R. E. Cardoza ◽  
E. Monte ◽  
N. J. Alexander ◽  
...  

Trichoderma species are often used as biocontrol agents against plant-pathogenic fungi. A complex molecular interaction occurs among the biocontrol agent, the antagonistic fungus, and the plant. Terpenes and sterols produced by the biocontrol fungus have been found to affect gene expression in both the antagonistic fungus and the plant. The terpene trichodiene (TD) elicits the expression of genes related to tomato defense and to Botrytis virulence. We show here that TD itself is able to induce the expression of Botrytis genes involved in the synthesis of botrydial (BOT) and also induces terpene gene expression in Trichoderma spp. The terpene ergosterol, in addition to its role as a structural component of the fungal cell membranes, acts as an elicitor of defense response in plants. In the present work, using a transformant of T. harzianum, which is silenced in the erg1 gene and accumulates high levels of squalene, we show that this ergosterol precursor also acts as an important elicitor molecule of tomato defense-related genes and induces Botrytis genes involved in BOT biosynthesis, in both cases, in a concentration-dependent manner. Our data emphasize the importance of a balance of squalene and ergosterol in fungal interactions as well as in the biocontrol activity of Trichoderma spp.


2021 ◽  
Vol 7 (3) ◽  
pp. 163 ◽  
Author(s):  
Sabelle Jallow ◽  
Nelesh P. Govender

Ibrexafungerp (formerly SCY-078 or MK-3118) is a first-in-class triterpenoid antifungal or “fungerp” that inhibits biosynthesis of β-(1,3)-D-glucan in the fungal cell wall, a mechanism of action similar to that of echinocandins. Distinguishing characteristics of ibrexafungerp include oral bioavailability, a favourable safety profile, few drug–drug interactions, good tissue penetration, increased activity at low pH and activity against multi-drug resistant isolates including C. auris and C. glabrata. In vitro data has demonstrated broad and potent activity against Candida and Aspergillus species. Importantly, ibrexafungerp also has potent activity against azole-resistant isolates, including biofilm-forming Candida spp., and echinocandin-resistant isolates. It also has activity against the asci form of Pneumocystis spp., and other pathogenic fungi including some non-Candida yeasts and non-Aspergillus moulds. In vivo data have shown IBX to be effective for treatment of candidiasis and aspergillosis. Ibrexafungerp is effective for the treatment of acute vulvovaginal candidiasis in completed phase 3 clinical trials.


2000 ◽  
Vol 13 (1) ◽  
pp. 122-143 ◽  
Author(s):  
Mahmoud A. Ghannoum

SUMMARY Microbial pathogens use a number of genetic strategies to invade the host and cause infection. These common themes are found throughout microbial systems. Secretion of enzymes, such as phospholipase, has been proposed as one of these themes that are used by bacteria, parasites, and pathogenic fungi. The role of extracellular phospholipase as a potential virulence factor in pathogenic fungi, including Candida albicans, Cryptococcus neoformans, and Aspergillus, has gained credence recently. In this review, data implicating phospholipase as a virulence factor in C. albicans, Candida glabrata, C. neoformans, and A. fumigatus are presented. A detailed description of the molecular and biochemical approaches used to more definitively delineate the role of phospholipase in the virulence of C. albicans is also covered. These approaches resulted in cloning of three genes encoding candidal phospholipases (caPLP1, caPLB2, and PLD). By using targeted gene disruption, C. albicans null mutants that failed to secrete phospholipase B, encoded by caPLB1, were constructed. When these isogenic strain pairs were tested in two clinically relevant murine models of candidiasis, deletion of caPLB1 was shown to lead to attenuation of candidal virulence. Importantly, immunogold electron microscopy studies showed that C. albicans secretes this enzyme during the infectious process. These data indicate that phospholipase B is essential for candidal virulence. Although the mechanism(s) through which phospholipase modulates fungal virulence is still under investigations, early data suggest that direct host cell damage and lysis are the main mechanisms contributing to fungal virulence. Since the importance of phospholipases in fungal virulence is already known, the next challenge will be to utilize these lytic enzymes as therapeutic and diagnostic targets.


2021 ◽  
Vol 7 (2) ◽  
pp. 86
Author(s):  
Bilal Ökmen ◽  
Daniela Schwammbach ◽  
Guus Bakkeren ◽  
Ulla Neumann ◽  
Gunther Doehlemann

Obligate biotrophic fungal pathogens, such as Blumeria graminis and Puccinia graminis, are amongst the most devastating plant pathogens, causing dramatic yield losses in many economically important crops worldwide. However, a lack of reliable tools for the efficient genetic transformation has hampered studies into the molecular basis of their virulence or pathogenicity. In this study, we present the Ustilago hordei–barley pathosystem as a model to characterize effectors from different plant pathogenic fungi. We generate U. hordei solopathogenic strains, which form infectious filaments without the presence of a compatible mating partner. Solopathogenic strains are suitable for heterologous expression system for fungal virulence factors. A highly efficient Crispr/Cas9 gene editing system is made available for U. hordei. In addition, U. hordei infection structures during barley colonization are analyzed using transmission electron microscopy, showing that U. hordei forms intracellular infection structures sharing high similarity to haustoria formed by obligate rust and powdery mildew fungi. Thus, U. hordei has high potential as a fungal expression platform for functional studies of heterologous effector proteins in barley.


mBio ◽  
2018 ◽  
Vol 9 (5) ◽  
Author(s):  
Robin C. May ◽  
Arturo Casadevall

ABSTRACT For pathogenic microbes to survive ingestion by macrophages, they must subvert powerful microbicidal mechanisms within the phagolysosome. After ingestion, Candida albicans undergoes a morphological transition producing hyphae, while the surrounding phagosome exhibits a loss of phagosomal acidity. However, how these two events are related has remained enigmatic. Now Westman et al. (mBio 9:e01226-18, 2018, https://doi.org/10.1128/mBio.01226-18) report that phagosomal neutralization results from disruption of phagosomal membrane integrity by the enlarging hyphae, directly implicating the morphological transition in physical damage that promotes intracellular survival. The C. albicans intracellular strategy shows parallels with another fungal pathogen, Cryptococcus neoformans, where a morphological changed involving capsular enlargement intracellularly is associated with loss of membrane integrity and death of the host cell. These similarities among distantly related pathogenic fungi suggest that morphological transitions that are common in fungi directly affect the outcome of the fungal cell-macrophage interaction. For this class of organisms, form determines fate in the intracellular environment.


2020 ◽  
Author(s):  
Emily F. Warner ◽  
Natália Bohálová ◽  
Václav Brázda ◽  
Zoë A. E. Waller ◽  
Stefan Bidula

AbstractFungi contribute to upwards of 1.5 million human deaths annually, are involved in the spoilage of up to a third of food crops, and have a devastating effect on plant and animal biodiversity. Moreover, this already significant issue is exacerbated by a rise in antifungal resistance and a critical requirement for novel drug targets. Quadruplexes are four-stranded secondary structures in nucleic acids which can regulate processes such as transcription, translation, replication, and recombination. They are also found in genes linked to virulence in microbes, and quadruplex-binding ligands have been demonstrated to eliminate drug resistant pathogens. Using a computational approach, we identified putative quadruplex-forming sequences (PQS) in 1362 genomes across the fungal kingdom and explored their potential involvement in virulence, drug resistance, and pathogenicity. Here we present the largest analysis of PQS in fungi and identified significant heterogeneity of these sequences throughout phyla, genera, and species. Moreover, PQS were genetically conserved. Notably, loss of PQS in cryptococci and aspergilli was associated with pathogenicity. PQS in the clinically important pathogens Aspergillus fumigatus, Cryptococcus neoformans, and Candida albicans were located within genes (particularly coding regions), mRNA, repeat regions, mobile elements, tRNA, ncRNA, rRNA, and the centromere. Genes containing PQS in these organisms were found to be primarily associated with metabolism, nucleic acid binding, transporter activity, and protein modification. Finally, PQS were found in over 100 genes associated with virulence, drug resistance, or key biological processes in these pathogenic fungi and were found in genes which were highly upregulated during germination, hypoxia, oxidative stress, iron limitation, and in biofilms. Taken together, quadruplexes in fungi could present interesting novel targets to ameliorate fungal virulence and overcome drug resistance.


mSphere ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Woei C. Lam ◽  
Rajendra Upadhya ◽  
Charles A. Specht ◽  
Abigail E. Ragsdale ◽  
Camaron R. Hole ◽  
...  

ABSTRACT Cryptococcus gattii R265 is a hypervirulent fungal strain responsible for the recent outbreak of cryptococcosis in Vancouver Island of British Columbia in Canada. It differs significantly from Cryptococcus neoformans in its natural environment, its preferred site in the mammalian host, and its pathogenesis. Our previous studies of C. neoformans have shown that the presence of chitosan, the deacetylated form of chitin, in the cell wall attenuates inflammatory responses in the host, while its absence induces robust immune responses, which in turn facilitate clearance of the fungus and induces a protective response. The results of the present investigation reveal that the cell wall of C. gattii R265 contains a two- to threefold larger amount of chitosan than that of C. neoformans. The genes responsible for the biosynthesis of chitosan are highly conserved in the R265 genome; the roles of the three chitin deacetylases (CDAs) have, however, been modified. To deduce their roles, single and double CDA deletion strains and a triple CDA deletion strain were constructed in a R265 background and were subjected to mammalian infection studies. Unlike C. neoformans where Cda1 has a discernible role in fungal pathogenesis, in strain R265, Cda3 is critical for virulence. Deletion of either CDA3 alone or in combination with another CDA (cda1Δ3Δ or cda2Δ3Δ) or both (cda1Δ2Δ3Δ) rendered the fungus avirulent and cleared from the infected host. Moreover, the cda1Δ2Δ3Δ strain of R265 induced a protective response to a subsequent infection with R265. These studies begin to illuminate the regulation of chitosan biosynthesis of C. gattii and its subsequent effect on fungal virulence. IMPORTANCE The fungal cell wall is an essential organelle whose components provide the first line of defense against host-induced antifungal activity. Chitosan is one of the carbohydrate polymers in the cell wall that significantly affects the outcome of host-pathogen interaction. Chitosan-deficient strains are avirulent, implicating chitosan as a critical virulence factor. C. gattii R265 is an important fungal pathogen of concern due to its ability to cause infections in individuals with no apparent immune dysfunction and an increasing geographical distribution. Characterization of the fungal cell wall and understanding the contribution of individual molecules of the cell wall matrix to fungal pathogenesis offer new therapeutic avenues for intervention. In this report, we show that the C. gattii R265 strain has evolved alternate regulation of chitosan biosynthesis under both laboratory growth conditions and during mammalian infection compared to that of C. neoformans.


2020 ◽  
Vol 21 (21) ◽  
pp. 7912 ◽  
Author(s):  
Tatyana Odintsova ◽  
Larisa Shcherbakova ◽  
Marina Slezina ◽  
Tatyana Pasechnik ◽  
Bakhyt Kartabaeva ◽  
...  

Hevein-like antimicrobial peptides (AMPs) comprise a family of plant AMPs with antifungal activity, which harbor a chitin-binding site involved in interactions with chitin of fungal cell walls. However, the mode of action of hevein-like AMPs remains poorly understood. This work reports the structure–function relationship in WAMPs—hevein-like AMPs found in wheat (Triticum kiharae Dorof. et Migush.) and later in other Poaceae species. The effect of WAMP homologues differing at position 34 and the antifungal activity of peptide fragments derived from the central, N- and C-terminal regions of one of the WAMPs, namely WAMP-2, on spore germination of different plant pathogenic fungi were studied. Additionally, the ability of WAMP-2-derived peptides to potentiate the fungicidal effect of tebuconazole, one of the triazole fungicides, towards five cereal-damaging fungi was explored in vitro by co-application of WAMP-2 fragments with Folicur® EC 250 (25% tebuconazole). The antifungal activity of WAMP homologues and WAMP-2-derived peptides varied depending on the fungus, suggesting multiple modes of action for WAMPs against diverse pathogens. Folicur® combined with the WAMP-2 fragments inhibited the spore germination at a much greater level than the fungicide alone, and the type of interactions was either synergistic or additive, depending on the target fungus and concentration combinations of the compounds. The combinations, which resulted in synergism and drastically enhanced the sensitivity to tebuconazole, were revealed for all five fungi by a checkerboard assay. The ability to synergistically interact with a fungicide and exacerbate the sensitivity of plant pathogenic fungi to a commercial antifungal agent is a novel and previously uninvestigated property of hevein-like AMPs.


Viruses ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 357 ◽  
Author(s):  
Lihang Zhang ◽  
Xiaoguang Chen ◽  
Pallab Bhattacharjee ◽  
Yue Shi ◽  
Lihua Guo ◽  
...  

Fungal viruses (mycoviruses) have attracted more attention for their possible hypovirulence (attenuation of fungal virulence) trait, which may be developed as a biocontrol agent of plant pathogenic fungi. However, most discovered mycoviruses are asymptomatic in their hosts. In most cases, mycovirus hypovirulent factors have not been explored clearly. In this study, we characterized a ssRNA mycovirus in Fusarium graminearum strain HB56-9. The complete nucleotide genome was obtained by combining random sequencing and rapid amplification of cDNA ends (RACE). The full genome was 6621-nucleotides long, excluding the poly(A) tail. The mycovirus was quite interesting because it shared 95.91% nucleotide identities with previously reported Fusarium graminearum virus 1 strain DK21 (FgV1-DK21), while the colony morphology of their fungal hosts on PDA plates were very different. The novel virus was named Fusarium graminearum virus 1 Chinese isolate (FgV1-ch). Like FgV1-DK21, FgV1-ch also contains four putative open reading frames (ORFs), including one long and three short ORFs. A phylogenetic analysis indicated that FgV1-ch is clustered into a proposed family Fusariviridae. FgV1-ch, unlike FgV1-DK21, had mild or no effects on host mycelial growth, spore production and virulence. The nucleotide differences between FgV1-ch and FgV1-DK21 will help to elucidate the hypovirulence determinants during mycovirus–host interaction.


Author(s):  
Laura Alcazar-Fuoli ◽  
Jagadeesh Bayry ◽  
Vishukumar Aimanianda

Sign in / Sign up

Export Citation Format

Share Document