scholarly journals A Novel Secreted Cysteine-Rich Anionic (Sca) Protein from the Citrus Postharvest Pathogen Penicillium digitatum Enhances Virulence and Modulates the Activity of the Antifungal Protein B (AfpB)

2020 ◽  
Vol 6 (4) ◽  
pp. 203
Author(s):  
Sandra Garrigues ◽  
Jose F. Marcos ◽  
Paloma Manzanares ◽  
Mónica Gandía

Antifungal proteins (AFPs) from ascomycete fungi could help the development of antimycotics. However, little is known about their biological role or functional interactions with other fungal biomolecules. We previously reported that AfpB from the postharvest pathogen Penicillium digitatum cannot be detected in the parental fungus yet is abundantly produced biotechnologically. While aiming to detect AfpB, we identified a conserved and novel small Secreted Cysteine-rich Anionic (Sca) protein, encoded by the gene PDIG_23520 from P. digitatum CECT 20796. The sca gene is expressed during culture and early during citrus fruit infection. Both null mutant (Δsca) and Sca overproducer (Scaop) strains show no phenotypic differences from the wild type. Sca is not antimicrobial but potentiates P. digitatum growth when added in high amounts and enhances the in vitro antifungal activity of AfpB. The Scaop strain shows increased incidence of infection in citrus fruit, similar to the addition of purified Sca to the wild-type inoculum. Sca compensates and overcomes the protective effect of AfpB and the antifungal protein PeAfpA from the apple pathogen Penicillium expansum in fruit inoculations. Our study shows that Sca is a novel protein that enhances the growth and virulence of its parental fungus and modulates the activity of AFPs.

2022 ◽  
Vol 8 (1) ◽  
pp. 80
Author(s):  
Yongmei Li ◽  
Mengyuan Xia ◽  
Pengbo He ◽  
Qiaoming Yang ◽  
Yixin Wu ◽  
...  

Citrus is among the most important plants in the fruit industry severely infected with pathogens. Citrus green mold caused by Penicillium digitatum is one of the most devastating diseases during post-harvest stages of citrus fruit. In this study, a potential endophyte Bacillus subtilis L1-21, isolated from healthy citrus plants, was assessed for its biocontrol activity against the pathogen P. digitatum. Based on an in vitro crosstalk assay, we suggested that B. subtilis L1-21 inhibits the pathogen with an inhibition zone of 3.51 ± 0.08 cm. Biocontrol efficacy was highest for the fermented culture filtrate of B. subtilis L1-21. Additionally, using GC-MS analysis, 13 compounds were detected in the extract of this endophyte. The culture filtrate in Landy medium could enlarge and deform pathogen spores and prevent them from developing into normal mycelium. Accordingly, the Landy culture filtrate of B. subtilis L1-21 was stable in the temperature range of 4–90 °C and pH of 3–11. Further, MALDI-TOF-MS for B. subtilis L1-21 detected surfactin, fengycin, bacillaene and bacilysin as potential antifungal compounds. GFP-tagged B. subtilis L1-21 easily colonized in citrus fruit peel and pulp, suggesting its role in eliminating the fungal pathogen. Altogether, it is highly expected that the production of antifungal compounds, and the colonization potential of B. subtilis L1-21 are required against the post-harvest P. digitatum pathogen on citrus fruit.


1999 ◽  
Vol 12 (5) ◽  
pp. 419-429 ◽  
Author(s):  
S. L. Woo ◽  
B. Donzelli ◽  
F. Scala ◽  
R. Mach ◽  
G. E. Harman ◽  
...  

The biocontrol strain P1 of Trichoderma harzianum was genetically modified by targeted disruption of the single-copy ech42 gene encoding for the secreted 42-kDa endochitinase (CHIT42). Stable mutants in which ech42 was interrupted, and unable to produce CHIT42, were obtained and characterized. These mutants lacked the ech42 transcript, the protein, and endochitinase activity in culture filtrates, and they were unable to clear a medium containing colloidal chitin. Other chitinolytic and glucanolytic enzymes expressed during mycoparasitism were not affected by the disruption of ech42. The disrupted mutant D11 grew and sporulated similarly to the wild type. In vitro antifungal activity of the ech42 disruptant culture filtrates against Botrytis cinerea and Rhizoctonia solani was reduced about 40%, compared with wild type; antifungal activity was fully restored by adding an equivalent amount of CHIT42 as secreted by P1. The mutant exhibited the same biocontrol effect against Pythium ultimum as strain P1, but the antagonism against B. cinerea on bean leaves by the mutant was significantly reduced (33% less biocontrol), compared with strain P1. Conversely, the endochitinase-deficient mutant performed better than the wild type (16% improvement of survival) in biocontrol experiments in soil infested with the soilborne fungus R. solani. These results indicate that the antagonistic interaction between the T. harzianum strain and various fungal hosts is based on different mechanisms.


2019 ◽  
Author(s):  
Nalat Siwapornchai ◽  
James N. Lee ◽  
Essi Y. I. Tchalla ◽  
Manmeet Bhalla ◽  
Jun Hui Yeoh ◽  
...  

AbstractPMNs are crucial for initial control of Streptococcus pneumoniae (pneumococcus) lung infection; however, as the infection progresses their persistence in the lungs becomes detrimental. Here we explored why the anti-microbial efficacy of PMNs declines over the course of infection. We found that the progressive inability of PMNs to control infection correlated with phenotypic differences characterized by a decrease in CD73 expression, an enzyme required for production of extracellular adenosine (EAD). EAD production by CD73 was crucial for the ability of both murine and human PMNs to kill S. pneumoniae. In exploring the mechanisms by which CD73 controlled PMN function, we found that CD73 mediated its anti-microbial activity by inhibiting IL-10 production. PMNs from wild type mice did not increase IL-10 production in response to S. pneumoniae, however, CD73-/- PMNs up-regulated IL-10 production upon pneumococcal infection in vitro and during lung challenge. IL-10 inhibited the ability of wild type PMNs to kill pneumococci. Conversely, blocking IL-10 boosted the bactericidal activity of CD73-/- PMNs as well as host resistance of CD73-/- mice to pneumococcal pneumonia. CD73/IL-10 did not affect apoptosis, bacterial uptake and intracellular killing or production of anti-microbial Neutrophil Elastase and Myeloperoxidase. Rather, inhibition of IL-10 production by CD73 was important for optimal ROS production by PMNs. ROS contributed to PMN anti-microbial function as their removal or detoxification impaired the ability of PMNs to efficiently kill S. pneumoniae. This study demonstrates that CD73 controls PMN anti-microbial phenotype during S. pneumoniae infection.


Plant Disease ◽  
2000 ◽  
Vol 84 (3) ◽  
pp. 249-253 ◽  
Author(s):  
Ahmed El-Ghaouth ◽  
Joseph L. Smilanick ◽  
Michael Wisniewski ◽  
Charles L. Wilson

A combination of Candida saitoana with 0.2% 2-deoxy-D-glucose to control decay of apple, lemon, and orange fruit was evaluated. Growth of C. saitoana in vitro was reduced by 2-deoxy-D-glucose; however, in apple wounds, the yeast grew as well in the presence of 2-deoxy-D-glucose as in its absence. When applied to fruit wounds before inoculation, the combination of C. saitoana with 0.2% 2-deoxy-D-glucose was more effective in controlling decay of apple, orange, and lemon caused by Botrytis cinerea, Penicillium expansum, and P. digitatum than either C. saitoana or the application of a 0.2% solution of 2-deoxy-D-glucose alone. Increasing the concentration of 2-deoxy-D-glucose from 0.2 to 0.5% did not improve control significantly. The combination of C. saitoana with 0.2% 2-deoxy-D-glucose was also effective against infections established up to 24 h before treatment. When applied within 24 h after inoculation, the combination of C. saitoana with 0.2% 2-deoxy-D-glucose was very effective in controlling blue mold of apple and green mold of orange and lemon. The level of control of green mold was equivalent to imazalil treatment. When either C. saitoana or 0.2% 2-deoxy-D-glucose was applied within 24 h after inoculation, neither had an effect on disease development on apple, orange, or lemon, and the incidence of decay was similar to the water-treated control.


2020 ◽  
Vol 6 (3) ◽  
pp. 175
Author(s):  
Ana-Rosa Ballester ◽  
Luis González-Candelas

Penicillium digitatum is the main fungal postharvest pathogen of citrus fruit under Mediterranean climate conditions. The role of ethylene in the P. digitatum–citrus fruit interaction is unclear and controversial. We analyzed the involvement of the 2-oxoglutarate-dependent ethylene-forming enzyme (EFE)-encoding gene (efeA) of P. digitatum on the pathogenicity of the fungus. The expression of P. digitatumefeA parallels ethylene production during growth on PDA medium, with maximum levels reached during sporulation. We generated ΔefeA knockout mutants in P. digitatum strain Pd1. These mutants showed no significant defect on mycelial growth or sporulation compared to the parental strain. However, the knockout mutants did not produce ethylene in vitro. Citrus pathogenicity assays showed no differences in virulence between the parental and ΔefeA knockout mutant strains, despite a lack of ethylene production by the knockout mutant throughout the infection process. This result suggests that ethylene plays no role in P. digitatum pathogenicity. Our results clearly show that EFE-mediated ethylene synthesis is the major ethylene synthesis pathway in the citrus postharvest pathogen P. digitatum during both in vitro growth on PDA medium and the infection process, and that this hormone is not necessary for establishing P. digitatum infection in citrus fruit. However, our results also indicate that ethylene produced by P. digitatum during sporulation on the fruit surface may influence the development of secondary fungal infections.


2020 ◽  
Vol 11 ◽  
Author(s):  
Guirong Feng ◽  
Xindan Li ◽  
Wenjun Wang ◽  
Lili Deng ◽  
Kaifang Zeng

Penicillium digitatum is the most damaging pathogen provoking green mold in citrus fruit during storage, and there is an urgent need for novel antifungal agents with high efficiency. The aim of this study was to investigate the antifungal effects of peptide thanatin against P. digitatum and the molecular mechanisms. Results showed that peptide thanatin had a prominent inhibitory effect on P. digitatum by in vitro and in vivo test. A total of 938 genes, including 556 downregulated and 382 upregulated genes, were differentially expressed, as revealed by RNA-seq of whole P. digitatum genomes analysis with or without thanatin treatment. The downregulated genes mainly encoded RNA polymerase, ribosome biogenesis, amino acid metabolism, and major facilitator superfamily. The genes associated with heat shock proteins and antioxidative systems were widely expressed in thanatin-treated group. DNA, RNA, and the protein content of P. digitatum were significantly decreased after thanatin treatment. In conclusion, thanatin could inhibit the growth of P. digitatum, and the underlying mechanism might be the genetic information processing and stress response were affected. The research will provide more precise and directional clues to explore the inhibitory mechanism of thanatin on growth of P. digitatum.


2007 ◽  
Vol 97 (11) ◽  
pp. 1491-1500 ◽  
Author(s):  
D. Macarisin ◽  
L. Cohen ◽  
A. Eick ◽  
G. Rafael ◽  
E. Belausov ◽  
...  

During the infection of citrus fruit by Penicillium digitatum there is little evidence of a host defense response. This suggests that P. digitatum has the ability to suppress host defenses. The current study demonstrates that P. digitatum suppresses a defense-related hydrogen peroxide (H2O2) burst in host tissue. In contrast, the nonhost pathogen, Penicillium expansum, triggers production of a significant amount of H2O2 in citrus fruit exocarp. Using laser scanning confocal microscopy, we demonstrated that P. digitatum suppressed an elevation in H2O2 up to 42 h after inoculation. Nevertheless, H2O2 levels around wounds inoculated with P. expansum increased by 63-fold above the control. P. digitatum continued to suppress H2O2 production in citrus fruit exocarp up to 66 h postinoculation and H2O2 levels were actually threefold below that of noninoculated controls. In contrast, the H2O2 level was still about 11-fold above the control value in wound sites inoculated with P. expansum. Studies on the effect of organic acids (as pH modulators) on the response of citrus fruit to compatible and noncompatible pathogens indicated that pathogenicity was enhanced only when host-tissue acidification was accompanied by the suppression of H2O2. Additionally, pathogenicity of both P. digitatum and P. expansum on citrus fruit was significantly enhanced by the H2O2-scavenging enzyme catalase. Based on our study and previous reports regarding the potential involvement of citric acid and catalase in green mold pathogenesis, we suggest that these compounds are strongly associated with the virulence of P. digitatum.


Sign in / Sign up

Export Citation Format

Share Document