scholarly journals The Exudation of Surplus Products Links Plant Functional Traits and Plant-Microbial Stoichiometry

Land ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 840
Author(s):  
Julian Cardenas ◽  
Fernando Santa ◽  
Eva Kaštovská

The rhizosphere is a hot spot of soil microbial activity and is largely fed by root exudation. The carbon (C) exudation flux, coupled with plant growth, is considered a strategy of plants to facilitate nutrient uptake. C exudation is accompanied by a release of nutrients. Nitrogen (N) and phosphorus (P) co-limit the productivity of the plant-microbial system. Therefore, the C:N:P stoichiometry of exudates should be linked to plant nutrient economies, plant functional traits (PFT) and soil nutrient availability. We aimed to identify the strongest links in C:N:P stoichiometry among all rhizosphere components. A total of eight grass species (from conservative to exploitative) were grown in pots under two different soil C:nutrient conditions for a month. As a result, a wide gradient of plant–microbial–soil interactions were created. A total of 43 variables of plants, exudates, microbial and soil C:N:P stoichiometry, and PFTs were evaluated. The variables were merged into four groups in a network analysis, allowing us to identify the strongest connections among the variables and the biological meaning of these groups. The plant–soil interactions were shaped by soil N availability. Faster-growing plants were associated with lower amounts of mineral N (and P) in the soil solution, inducing a stronger competition for N with microorganisms in the rhizosphere compared to slower-growing plants. The plants responded by enhancing their N use efficiency and root:shoot ratio, and they reduced N losses via exudation. Root growth was supported either by reallocated foliar reserves or by enhanced ammonium uptake, which connected the specific leaf area (SLA) to the mineral N availability in the soil. Rapid plant growth enhanced the exudation flux. The exudates were rich in C and P relative to N compounds and served to release surplus metabolic products. The exudate C:N:P stoichiometry and soil N availability combined to shape the microbial stoichiometry, and N and P mining. In conclusion, the exudate flux and its C:N:P stoichiometry reflected the plant growth rate and nutrient constraints with a high degree of reliability. Furthermore, it mediated the plant–microbial interactions in the rhizosphere.

Author(s):  
Olivia H. Cousins ◽  
Trevor P. Garnett ◽  
Amanda Rasmussen ◽  
Sacha J. Mooney ◽  
Ronald J. Smernik ◽  
...  

AbstractDue to climate change, water availability will become increasingly variable, affecting nitrogen (N) availability. Therefore, we hypothesised watering frequency would have a greater impact on plant growth than quantity, affecting N availability, uptake and carbon allocation. We used a gravimetric platform, which measures the unit of volume per unit of time, to control soil moisture and precisely compare the impact of quantity and frequency of water under variable N levels. Two wheat genotypes (Kukri and Gladius) were used in a factorial glasshouse pot experiment, each with three N application rates (25, 75 and 150 mg N kg−1 soil) and five soil moisture regimes (changing water frequency or quantity). Previously documented drought tolerance, but high N use efficiency, of Gladius as compared to Kukri provides for potentially different responses to N and soil moisture content. Water use, biomass and soil N were measured. Both cultivars showed potential to adapt to variable watering, producing higher specific root lengths under low N coupled with reduced water and reduced watering frequency (48 h watering intervals), or wet/dry cycling. This affected mineral N uptake, with less soil N remaining under constant watering × high moisture, or 48 h watering intervals × high moisture. Soil N availability affected carbon allocation, demonstrated by both cultivars producing longer, deeper roots under low N. Reduced watering frequency decreased biomass more than reduced quantity for both cultivars. Less frequent watering had a more negative effect on plant growth compared to decreasing the quantity of water. Water variability resulted in differences in C allocation, with changes to root thickness even when root biomass remained the same across N treatments. The preferences identified in wheat for water consistency highlights an undeveloped opportunity for identifying root and shoot traits that may improve plant adaptability to moderate to extreme resource limitation, whilst potentially encouraging less water and nitrogen use.


2021 ◽  
Vol 13 (10) ◽  
pp. 5649
Author(s):  
Giovani Preza-Fontes ◽  
Junming Wang ◽  
Muhammad Umar ◽  
Meilan Qi ◽  
Kamaljit Banger ◽  
...  

Freshwater nitrogen (N) pollution is a significant sustainability concern in agriculture. In the U.S. Midwest, large precipitation events during winter and spring are a major driver of N losses. Uncertainty about the fate of applied N early in the growing season can prompt farmers to make additional N applications, increasing the risk of environmental N losses. New tools are needed to provide real-time estimates of soil inorganic N status for corn (Zea mays L.) production, especially considering projected increases in precipitation and N losses due to climate change. In this study, we describe the initial stages of developing an online tool for tracking soil N, which included, (i) implementing a network of field trials to monitor changes in soil N concentration during the winter and early growing season, (ii) calibrating and validating a process-based model for soil and crop N cycling, and (iii) developing a user-friendly and publicly available online decision support tool that could potentially assist N fertilizer management. The online tool can estimate real-time soil N availability by simulating corn growth, crop N uptake, soil organic matter mineralization, and N losses from assimilated soil data (from USDA gSSURGO soil database), hourly weather data (from National Weather Service Real-Time Mesoscale Analysis), and user-entered crop management information that is readily available for farmers. The assimilated data have a resolution of 2.5 km. Given limitations in prediction accuracy, however, we acknowledge that further work is needed to improve model performance, which is also critical for enabling adoption by potential users, such as agricultural producers, fertilizer industry, and researchers. We discuss the strengths and limitations of attempting to provide rapid and cost-effective estimates of soil N availability to support in-season N management decisions, specifically related to the need for supplemental N application. If barriers to adoption are overcome to facilitate broader use by farmers, such tools could balance the need for ensuring sufficient soil N supply while decreasing the risk of N losses, and helping increase N use efficiency, reduce pollution, and increase profits.


2021 ◽  
Author(s):  
Arezoo Taghizadeh-Toosi ◽  
Baldur Janz ◽  
Rodrigo Labouriau ◽  
Jørgen E. Olesen ◽  
Klaus Butterbach-Bahl ◽  
...  

2000 ◽  
Vol 10 (1) ◽  
pp. 34 ◽  
Author(s):  
Donald R. Zak ◽  
Kurt S. Pregitzer ◽  
Peter S. Curtis ◽  
Christoph S. Vogel ◽  
William E. Holmes ◽  
...  

2001 ◽  
Vol 1 ◽  
pp. 22-29 ◽  
Author(s):  
S. Kuo ◽  
B. Huang ◽  
R. Bembenek

Biculture of nonlegumes and legumes could serve as cover crops for increasing main crop yield, while reducing NO3leaching. This study, conducted from 1994 to 1999, determined the effect of monocultured cereal rye (Secale cereale L.), annual ryegrass (Lolium multiflorum), and hairy vetch (Vicia villosa), and bicultured rye/vetch and ryegrass/vetch on N availability in soil, corn (Zea mays L.) yield, and NO3-N leaching in a silt loam soil. The field had been in corn and cover crop rotation since 1987. In addition to the cover crop treatments, there were four N fertilizer rates (0, 67, 134, and 201 kg N ha-1, referred to as N0, N1, N2, and N3, respectively) applied to corn. The experiment was a randomized split-block design with three replications for each treatment. Lysimeters were installed in 1987 at 0.75 m below the soil surface for leachate collection for the N0, N2, and N3treatments. The result showed that vetch monoculture had the most influence on soil N availability and corn yield, followed by the bicultures. Rye or ryegrass monoculture had either no effect or an adverse effect on corn yield and soil N availability. Leachate NO3-N concentration was highest where vetch cover crop was planted regardless of N rates, which suggests that N mineralization of vetch N continued well into the fall and winter. Leachate NO3-N concentration increased with increasing N fertilizer rates and exceeded the U.S. Environmental Protection Agency’s drinking water standard of 10 mg N l�1 even at recommended N rate for corn in this region (coastal Pacific Northwest). In comparisons of the average NO3-N concentration during the period of high N leaching, monocultured rye and ryegrass or bicultured rye/vetch and ryegrass/vetch very effectively decreased N leaching in 1998 with dry fall weather. The amount of N available for leaching (determined based on the presidedress nitrate test, the amount of N fertilizer applied, and N uptake) correlated well with average NO3-N during the high N leaching period for vetch cover crop treatment and for the control without the cover crops. The correlation, however, failed for other cover crops largely because of variable effectiveness of the cover crops in reducing NO3leaching during the 5 years of this study. Further research is needed to determine if relay cover crops planted into standing summer crops is a more appropriate approach than fall seeding in this region to gain sufficient growth of the cover crop by fall. Testing with other main crops that have earlier harvest dates than corn is also needed to further validate the effectiveness of the bicultures to increase soil N availability while protecting the water quality.


2000 ◽  
Vol 10 (1) ◽  
pp. 18-33 ◽  
Author(s):  
Kurt S. Pregitzer ◽  
Donald R. Zak ◽  
Jennifer Maziasz ◽  
Jared DeForest ◽  
Peter S. Curtis ◽  
...  

2019 ◽  
Vol 9 (21) ◽  
pp. 4481 ◽  
Author(s):  
Figueiredo ◽  
Coser ◽  
Moreira ◽  
Leão ◽  
Vale ◽  
...  

Biochar has been presented as a multifunctional material with short- and long-term agro-environmental benefits, including soil organic matter stabilization, improved nutrient cycling, and increased primary productivity. However, its turnover time, when applied to soil, varies greatly depending on feedstock and pyrolysis temperature. For sewage sludge-derived biochars, which have high N contents, there is still a major uncertainty regarding the influence of pyrolysis temperatures on soil carbon mineralization and its relationship to soil N availability. Sewage sludge and sewage sludge-derived biochars produced at 300 °C (BC300), 400 °C (BC400), and 500 °C (BC500) were added to an Oxisol in a short-term incubation experiment. Carbon mineralization and nitrogen availability (N-NH4+ and N-NO3−) were studied using a first-order model. BC300 and BC400 showed higher soil C mineralization rates and N-NH4+ contents, demonstrating their potential to be used for plant nutrition. Compared to the control, the cumulative C-CO2 emissions increased by 60–64% when biochars BC300 and BC400 were applied to soil. On the other hand, C-CO2 emissions decreased by 6% after the addition of BC500, indicating the predominance of recalcitrant compounds, which results in a lower supply of soil N-NH4+ (83.4 mg kg−1) in BC500, being 67% lower than BC300 (255.7 mg kg−1). Soil N availability was strongly influenced by total N, total C, C/N ratio, H, pore volume, and specific surface area in the biochars.


Sign in / Sign up

Export Citation Format

Share Document