scholarly journals Systematic Conservation Planning as a Tool for the Assessment of Protected Areas Network in Jordan

Land ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 56
Author(s):  
Natalia Boulad ◽  
Sattam Al Shogoor ◽  
Wahib Sahwan ◽  
Nedal Al-Ouran ◽  
Brigitta Schütt

The present study aims to use systematic conservation planning to analyse and review the national protected areas (PAs) network in Jordan. The analysis included the application of three modules: the environmental risk surface (ERS), the relative biodiversity index (RBI), and the application of Marxan. The methodology was based on using Marxan to achieve solutions for three scenarios for the PAs network. Marxan was applied to the input data, which included vegetation types, distribution of threatened mammals and plants, locations of currently established PAs and other types of designations. The first two scenarios aimed to conserve 4% and 17%, respectively, of each vegetation type, and 10% and 20%, respectively, of the extent of occurrence of threatened mammals and plants. The third scenario aimed to conserve 17% of each vegetation type and 10% of the extent of occurrence of threatened plants and mammals, except for forest and the Hammada vegetation which had the target of 30% and 4%, respectively. The results of the three scenarios indicated that the boundaries of existing reserves should be extended to achieve the conservation targets. Some currently proposed (PAs), such as the Aqaba Mountains, did not appear in any of the solutions for the three scenarios indicating that the inclusion of these sites in the proposed (PAs) network should be reconsidered. All three scenarios highlighted the importance of having conservation areas between the western and eastern parts of the country. Systematic conservation planning is a structured, replicable, transparent, and defensible method for designing PA networks. It allows for finding efficient solutions building on what is currently conserved and minimizing the fragmentation and cost of the proposed solution for conservation areas.

2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Banu Kaya özdemirel

Cross taxa congruence was investigated between butterfly taxa and ecological community for fine spatial scale (10 × 10 km² UTM grids) in north-eastern part of Turkey. The study area was evaluated within the scope of systematic conservation planning, and analyses were performed for sets of priority protected areas composed using complementarity-based site selection software Marxan. Cross taxa congruence was subsequently examined both in species richness and ecologic complementarity. Accordingly, it has been observed that the cross-taxon congruence between butterfly taxa and ecological community was relatively better than the results of previous studies. Another remarkable finding is that ecological community was a more robust surrogate than butterfly taxa. Although the results are valuable for conservation studies, they highlight the fact that a simple surrogate-based site selection would be inadequate to represent overall biodiversity.  The weakness of congruence patterns among surrogates would also lead to gaps in biodiversity conservation. These findings therefore draw attention to the necessities of incorporating surrogates of distinct ecology or some other surrogates like environmental parameters into conservation planning. Otherwise, there may be mistakes regarding species representation and the vast majority of species may be misrepresented in protected areas and protected area plans. At this point, it should be emphasized that understating cross taxa congruence and/or relationships is a key component for efficient biodiversity conservation.


2019 ◽  
Author(s):  
Sabrine Drira ◽  
Frida Ben Rais Lasram ◽  
Tarek Hattab ◽  
Yunne Jai Shin ◽  
Amel Ben Rejeb Jenhani ◽  
...  

AbstractSpecies distribution models (SDMs) have been proposed as a way to provide robust inference about species-specific sites suitabilities, and have been increasingly used in systematic conservation planning (SCP) applications. However, despite the fact that the use of SDMs in SCP may raise some potential issues, conservation studies have overlooked to assess the implications of SDMs uncertainties. The integration of these uncertainties in conservation solutions requires the development of a reserve-selection approach based on a suitable optimization algorithm. A large body of research has shown that exact optimization algorithms give very precise control over the gap to optimality of conservation solutions. However, their major shortcoming is that they generate a single binary and indivisible solution. Therefore, they provide no flexibility in the implementation of conservation solutions by stakeholders. On the other hand, heuristic decision-support systems provide large amounts of sub-optimal solutions, and therefore more flexibility. This flexibility arises from the availability of many alternative and sub-optimal conservation solutions. The two principles of efficiency and flexibility are implicitly linked in conservation applications, with the most mathematically efficient solutions being inflexible and the flexible solutions provided by heuristics suffering sub-optimality. In order to avoid the trade-offs between flexibility and efficiency in systematic conservation planning, we propose in this paper a new reserve-selection framework based on mathematical programming optimization combined with a post-selection of SDM outputs. This approach leads to a reserve-selection framework that might provide flexibility while simultaneously addressing efficiency and representativeness of conservation solutions and the adequacy of conservation targets. To exemplify the approach we a nalyzed an experimental design crossing pre- and post-selection of SDM outputs versus heuristics and exact mathematical optimizations. We used the Mediterranean Sea as a biogeographical template for our analyses, integrating the outputs of 8 SDM techniques for 438 fishes species.


2017 ◽  
Author(s):  
Ivan Paz-Vinas ◽  
Géraldine Loot ◽  
Virgilio Hermoso ◽  
Charlotte Veyssiere ◽  
Nicolas Poulet ◽  
...  

AbstractIntraspecific diversity informs the demographic and evolutionary histories of populations, and should be a main conservation target. Although approaches exist for identifying relevant biological conservation units, attempts to identify priority conservation areas for intraspecific diversity are scarce, especially within a multi-specific framework. We used neutral molecular data on six European freshwater fish species (Squalius cephalus, Phoxinus phoxinus, Barbatula barbatula, Gobio occitaniae, Leuciscus burdigalensis and Parachondrostoma toxostoma) sampled at the riverscape scale (i.e. the Garonne-Dordogne River basin, France) to determine hot- and cold-spots of genetic diversity, and to identify priority conservation areas using a systematic conservation planning approach. We demonstrate that systematic conservation planning is efficient for identifying priority areas representing a predefined part of the total genetic diversity of a whole landscape. With the exception of private allelic richness, classical genetic diversity indices (allelic richness, genetic uniqueness) were poor predictors for identifying priority areas. Moreover, we identified weak surrogacies among conservation solutions found for each species, implying that conservation solutions are highly species-specific. Nonetheless, we showed that priority areas identified using intraspecific genetic data from multiple species provide more effective conservation solutions than areas identified for single species or on the basis of traditional taxonomic criteria.


2016 ◽  
Vol 43 (3) ◽  
pp. 199-207
Author(s):  
RAFAEL URBINA-CASANOVA ◽  
FEDERICO LUEBERT ◽  
PATRICIO PLISCOFF ◽  
ROSA A. SCHERSON

SUMMARYConservation planning relies heavily on representativeness patterns. In Chile, this has not been assessed at the species level. This study evaluates floristic representativeness in the National System of Protected Areas (SNASPE). Species rarefaction and non-parametric estimators were used to extrapolate total representativeness. Given that conservation planning in Chile is mainly based on protecting vegetation types, the effectiveness of using vegetation types as a surrogate of plant species was evaluated based on richness and complementarity. The study found available information for 42% of the 96 protected areas of continental Chile. According to this information the SNASPE protects at least 48% of the native vascular flora. The southern area protects the largest number of species, most of which are non-endemic natives. The largest number of endemic protected species was found in the central-northern area. The SNASPE in its full range is projected to protect 64% of the vascular flora of Chile. Richness and complementarity surrogacy analyses showed weak effectiveness of vegetation types as a surrogate of plant species, although complementarity performed slightly better than richness. Surrogacy effectiveness was lower for endemic species, probably due to their narrow distributions that are more easily missed when vegetation types are considered instead.


2018 ◽  
Vol 285 (1877) ◽  
pp. 20172746 ◽  
Author(s):  
Ivan Paz-Vinas ◽  
Géraldine Loot ◽  
Virgilio Hermoso ◽  
Charlotte Veyssière ◽  
Nicolas Poulet ◽  
...  

Intraspecific diversity informs the demographic and evolutionary histories of populations, and should be a main conservation target. Although approaches exist for identifying relevant biological conservation units, attempts to identify priority conservation areas for intraspecific diversity are scarce, especially within a multi-specific framework. We used neutral molecular data on six European freshwater fish species (Squalius cephalus,Phoxinus phoxinus, Barbatula barbatula,Gobio occitaniae,Leuciscus burdigalensisandParachondrostoma toxostoma) sampled at the riverscape scale (i.e. the Garonne-Dordogne river basin, France) to determine hot- and coldspots of genetic diversity, and to identify priority conservation areas using a systematic conservation planning approach. We demonstrate that systematic conservation planning is efficient for identifying priority areas representing a predefined part of the total genetic diversity of a whole landscape. With the exception of private allelic richness (PA), classical genetic diversity indices (allelic richness, genetic uniqueness) were poor predictors for identifying priority areas. Moreover, we identified weak surrogacies among conservation solutions found for each species, implying that conservation solutions are highly species-specific. Nonetheless, we showed that priority areas identified using intraspecific genetic data from multiple species provide more effective conservation solutions than areas identified for single species or on the basis of traditional taxonomic criteria.


2018 ◽  
Author(s):  
Arieanna C Balbar ◽  
Anna Metaxas

Marine protected areas (MPAs) are an area-based conservation strategy commonly used to safeguard marine biodiversity and ecosystem services. Population connectivity governs the exchange of individuals among spatially fragmented habitats and is an essential criterion in the design of MPAs. However, detailed computational methods for connectivity are inconsistently applied in management decisions. We reviewed the scientific and management literature to explore the use of connectivity in MPAs located in countries with advanced marine spatial planning. Only 7.8% of 739 MPAs considered connectivity as an ecological criterion, although it has been increasingly used since 2007, suggesting progress in spatial conservation planning towards the use of ecological conservation objectives. In most cases, connectivity was measured implicitly using either rules of thumb or size and spacing guidelines. Of the MPAs that considered connectivity, 67% were for state marine conservation areas or reserves in California and commonwealth marine reserves in Australia. This pattern indicates substantial geographic biases and significant differences in conservation planning and prioritization among countries. We suggest that the incorporation of connectivity in conservation planning needs to become more accessible to practitioners. Prioritizing connectivity as an ecologically important criterion in MPA design will more adequately address metapopulation persistence and recovery.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ibon Galparsoro ◽  
Ángel Borja

Environmental conservation is currently one of the main objectives of marine management. It is agreed that effective management requires evaluating the tradeoffs between protection and economic costs for negatively impacted maritime activities. For these reasons, integrated approaches combining ecological and socio-economic aspects are needed to achieve nature conservation and sustainability targets. Here, we present an approach to identify cost-effective priority marine areas for protection through a Systematic Conservation Planning method, adopting the Basque Country as case study (SE Bay of Biscay). Eight protection scenarios were defined, targeting a combination of protection features: benthic habitats, biological value of cetaceans, birds, macroalgae, and macroinvertebrates, potential provision of ecosystem services, and habitat sensitivity to human activities. In turn, the total fishing pressure produced by artisanal fisheries was adopted as a measure of the socio-economic costs of protection (assuming, for this research, that fishing would be banned in the protected areas). The results indicated that existing marine protected areas (MPAs) were very close to achieving prescribed protection targets, while these targets could be achieved by increasing the size of the existing MPAs. Higher costs were associated with the declaration of areas that were targeting a larger number of protection features. Nevertheless, cost/effectiveness was higher in these cases, with the environmental benefits outweighing a comparatively smaller increase in cost. However, the most cost-effective scenarios were those that included the extension of already existing MPAs. The method implemented can assist managers and decision makers in identifying conservation gaps and ecosystem components that require special attention. In addition, the approach can be used to develop management strategies that may be adopted under different protection scenarios. Thus, the approach proposed here could be used to inform ecosystem-based marine spatial planning.


2008 ◽  
Vol 66 (1) ◽  
pp. 137-146 ◽  
Author(s):  
Luigi Maiorano ◽  
Valerio Bartolino ◽  
Francesco Colloca ◽  
Alvaro Abella ◽  
Andrea Belluscio ◽  
...  

Abstract Maiorano, L., Bartolino, V., Colloca, F., Abella, A., Belluscio, A., Carpentieri, P., Criscoli, A., Jona Lasinio, G., Mannini, A., Pranovi, F., Reale, B., Relini, G., Viva, C., and Ardizzone, G. D. 2009. Systematic conservation planning in the Mediterranean: a flexible tool for the identification of no-take marine protected areas. – ICES Journal of Marine Science, 66: 137–146. We propose the use of systematic conservation planning in the Mediterranean context for the identification of no-take marine protected areas (NTMPAs). We suggest a logical framework that should be used for the identification of areas to be targeted for multispecies, spatially explicit conservation actions. Specifically, we propose seven steps: (i) definition of the study area; (ii) selection of the species or habitats to be considered; (iii) definition of the planning units; (iv) measurement of the fishing effort; (v) definition of the conservation targets; (vi) review of the existing conservation areas; (vii) selection of additional NTMPAs. Moreover, we consider the potential impact of different conservation plans on existing fishing vessels. A working example is presented, focusing on a limited number of species and on a limited study area. This framework can be easily expanded to include datasets of different origin and to accommodate larger spatial scales. Such a process involves major data-collection and capacity-building elements, and conservation of productive commercial fisheries must be a priority.


2016 ◽  
Vol 92 (03) ◽  
pp. 322-335 ◽  
Author(s):  
Yolanda F. Wiersma ◽  
Darren J.H. Sleep

Systematic Conservation Planning (SCP) is an approach to protected areas planning that follows a step-by-step process. Recent reviews have examined the use of key “biogeographic-concepts”, but an assessment of their use or effectiveness has not been done. We conducted a review of the literature on SCP to assess how the 6-step approach considers these concepts. Most of the 127 papers we reviewed varied in their application of SCP steps. Our findings suggest that protected areas plans are not effectively achieving conservation goals. Only six papers considered data uncertainty. Twenty papers used so-called “data free” conservation targets without clear rationales, and which have been shown to under-represent natural features. The median size of planning units applied (2500 ha) is too small to meet minimum area requirements for many species. We show how an examination of the variation in the ways that SCP is applied helps to identify best practices for achieving conservation effectiveness and efficiency. However, very few SCP efforts have been implemented, making it difficult to assess their effectiveness or efficiency in practice. Detailed examination of how SCP is implemented (perhaps focused on a specific region) can lead to a better understanding of how best to achieve large-scale conservation goals.


Sign in / Sign up

Export Citation Format

Share Document