scholarly journals Identification of Novel Potential VEGFR-2 Inhibitors Using a Combination of Computational Methods for Drug Discovery

Life ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1070
Author(s):  
Mohammad M. Al-Sanea ◽  
Garri Chilingaryan ◽  
Narek Abelyan ◽  
Arsen Sargsyan ◽  
Sargis Hovhannisyan ◽  
...  

The vascular endothelial growth factor receptor 2 (VEGFR-2) is largely recognized as a potent therapeutic molecular target for the development of angiogenesis-related tumor treatment. Tumor growth, metastasis and multidrug resistance highly depends on the angiogenesis and drug discovery of the potential small molecules targeting VEGFR-2, with the potential anti-angiogenic activity being of high interest to anti-cancer research. Multiple small molecule inhibitors of the VEGFR-2 are approved for the treatment of different type of cancers, with one of the most recent, tivozanib, being approved by the FDA for the treatment of relapsed or refractory advanced renal cell carcinoma (RCC). However, the endogenous and acquired resistance of the protein, toxicity of compounds and wide range of side effects still remain critical issues, which lead to the short-term clinical effects and failure of antiangiogenic drugs. We applied a combination of computational methods and approaches for drug design and discovery with the goal of finding novel, potential and small molecule inhibitors of VEGFR2, as alternatives to the known inhibitors’ chemical scaffolds and components. From studying several of these compounds, the derivatives of pyrido[1,2-a]pyrimidin-4-one and isoindoline-1,3-dione in particular were identified.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Paul Erhardt ◽  
Kenneth Bachmann ◽  
Donald Birkett ◽  
Michael Boberg ◽  
Nicholas Bodor ◽  
...  

Abstract This project originated more than 15 years ago with the intent to produce a glossary of drug metabolism terms having definitions especially applicable for use by practicing medicinal chemists. A first-draft version underwent extensive beta-testing that, fortuitously, engaged international audiences in a wide range of disciplines involved in drug discovery and development. It became clear that the inclusion of information to enhance discussions among this mix of participants would be even more valuable. The present version retains a chemical structure theme while expanding tutorial comments that aim to bridge the various perspectives that may arise during interdisciplinary communications about a given term. This glossary is intended to be educational for early stage researchers, as well as useful for investigators at various levels who participate on today’s highly multidisciplinary, collaborative small molecule drug discovery teams.


2018 ◽  
Vol 18 (20) ◽  
pp. 1719-1736 ◽  
Author(s):  
Sharanya Sarkar ◽  
Khushboo Gulati ◽  
Manikyaprabhu Kairamkonda ◽  
Amit Mishra ◽  
Krishna Mohan Poluri

Background: To carry out wide range of cellular functionalities, proteins often associate with one or more proteins in a phenomenon known as Protein-Protein Interaction (PPI). Experimental and computational approaches were applied on PPIs in order to determine the interacting partners, and also to understand how an abnormality in such interactions can become the principle cause of a disease. Objective: This review aims to elucidate the case studies where PPIs involved in various human diseases have been proven or validated with computational techniques, and also to elucidate how small molecule inhibitors of PPIs have been designed computationally to act as effective therapeutic measures against certain diseases. Results: Computational techniques to predict PPIs are emerging rapidly in the modern day. They not only help in predicting new PPIs, but also generate outputs that substantiate the experimentally determined results. Moreover, computation has aided in the designing of novel inhibitor molecules disrupting the PPIs. Some of them are already being tested in the clinical trials. Conclusion: This review delineated the classification of computational tools that are essential to investigate PPIs. Furthermore, the review shed light on how indispensable computational tools have become in the field of medicine to analyze the interaction networks and to design novel inhibitors efficiently against dreadful diseases in a shorter time span.


Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1876
Author(s):  
Magdalena Massalska ◽  
Wlodzimierz Maslinski ◽  
Marzena Ciechomska

The development of biological disease-modifying antirheumatic drugs (bDMARDs) and target synthetic DMARDs (tsDMARDs), also known as small molecule inhibitors, represent a breakthrough in rheumatoid arthritis (RA) treatment. The tsDMARDs are a large family of small molecules targeting mostly the several types of kinases, which are essential in downstream signaling of pro-inflammatory molecules. This review highlights current challenges associated with the treatment of RA using small molecule inhibitors targeting intracellular JAKs/MAPKs/NF-κB/SYK-BTK signaling pathways. Indeed, we have provided the latest update on development of small molecule inhibitors, their clinical efficacy and safety as a strategy for RA treatment. On the other hand, we have highlighted the risk and adverse effects of tsDMARDs administration including, among others, infections and thromboembolism. Therefore, performance of blood tests or viral infection screening should be recommended before the tsDMARDs administration. Interestingly, recent events of SARS-CoV-2 outbreak have demonstrated the potential use of small molecule inhibitors not only in RA treatment, but also in fighting COVID-19 via blocking the viral entry, preventing of hyperimmune activation and reducing cytokine storm. Thus, small molecule inhibitors, targeting wide range of pro-inflammatory singling pathways, may find wider implications not only for the management of RA but also in the controlling of COVID-19.


Sign in / Sign up

Export Citation Format

Share Document