scholarly journals Diverse Effect of Two Cytokinins, Kinetin and Benzyladenine, on Plant Development, Biotic Stress Tolerance and Gene Expression

Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1404
Author(s):  
Zoltán Bozsó ◽  
Balázs Barna

The plant hormones cytokinins affect a various array of plant growth and development processes as well as responses to biotic and abiotic stresses. In this study, the opposite effect of two different cytokinins kinetin (N6-furfuryladenine) and benzyladenine (BA) on development and on the tolerance of Arabidopsis and tobacco plants to virus, bacteria, and fungi infection was reported. Treatments of Arabidopsis and tobacco seedlings with saturated solutions of BA inhibited plant progress, while treatments with saturated water solution of kinetin promoted plant development. Furthermore, BA pre-treatments strongly reduced the number of TMV (Tobacco mosaic virus) lesions on tobacco and the tissue damage caused by the incompatible Pseudomonas bacteria on Arabidopsis and tobacco leaves. Similarly, BA pre-treatment significantly reduced the necrotic disease symptoms of Botrytis cinerea infection. Kinetin pre-treatments had a much weaker or no protective effect on the damage caused by the above pathogens. Accordingly, Arabidopsis gene expression profiles after treatments also showed that the two cytokinins have different effects on several plant processes. The gene expression results supported the more robust effect of BA, which up and downregulated more than 2000 genes, while only 436 genes were influenced by kinetin treatment. It is noteworthy that BA and kinetin treatment changed gene expressions in the same direction only in a relatively few cases (73 upregulated and 70 downregulated genes), and even 28 genes were regulated into the opposite directions by BA and kinetin. Both treatments had a strong effect on auxin and gibberellin-related genes, but only BA had a significant effect on cytokinin-induced processes. While kinetin exclusively activated the flavonoid synthesis genes, BA affected more significantly protein synthesis, photosynthesis, and plant defence-related genes. In conclusion, BA solution had sometimes the opposite and generally a much stronger effect than kinetin solution not only on the development and on biotic stress tolerance of tobacco and Arabidopsis plants but also on the gene expressions. The stronger protective effect of BA to necrotic stresses is probably due to its stronger senescence inhibitory effect on plant tissues, as supported by the stronger chlorophyll retardation of the BA-treated leaves.

2008 ◽  
Vol 5 (2) ◽  
Author(s):  
Li Teng ◽  
Laiwan Chan

SummaryTraditional analysis of gene expression profiles use clustering to find groups of coexpressed genes which have similar expression patterns. However clustering is time consuming and could be diffcult for very large scale dataset. We proposed the idea of Discovering Distinct Patterns (DDP) in gene expression profiles. Since patterns showing by the gene expressions reveal their regulate mechanisms. It is significant to find all different patterns existing in the dataset when there is little prior knowledge. It is also a helpful start before taking on further analysis. We propose an algorithm for DDP by iteratively picking out pairs of gene expression patterns which have the largest dissimilarities. This method can also be used as preprocessing to initialize centers for clustering methods, like K-means. Experiments on both synthetic dataset and real gene expression datasets show our method is very effective in finding distinct patterns which have gene functional significance and is also effcient.


Author(s):  
Crescenzio Gallo

The possible applications of modeling and simulation in the field of bioinformatics are very extensive, ranging from understanding basic metabolic paths to exploring genetic variability. Experimental results carried out with DNA microarrays allow researchers to measure expression levels for thousands of genes simultaneously, across different conditions and over time. A key step in the analysis of gene expression data is the detection of groups of genes that manifest similar expression patterns. In this chapter, the authors examine various methods for analyzing gene expression data, addressing the important topics of (1) selecting the most differentially expressed genes, (2) grouping them by means of their relationships, and (3) classifying samples based on gene expressions.


Diagnostics ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 584
Author(s):  
Sergii Babichev ◽  
Jiří Škvor

In this paper, we present the results of the research concerning extraction of informative gene expression profiles from high-dimensional array of gene expressions considering the state of patients’ health using clustering method, ML-based binary classifiers and fuzzy inference system. Applying of the proposed stepwise procedure can allow us to extract the most informative genes taking into account both the subtypes of disease or state of the patient’s health for further reconstruction of gene regulatory networks based on the allocated genes and following simulation of the reconstructed models. We used the publicly available gene expressions data as the experimental ones which were obtained using DNA microarray experiments and contained two types of patients’ gene expression profiles—the patients with lung cancer tumor and healthy patients. The stepwise procedure of the data processing assumes the following steps—in the beginning, we reduce the number of genes by removing non-informative genes in terms of statistical criteria and Shannon entropy; then, we perform the stepwise hierarchical clustering of gene expression profiles at hierarchical levels from 1 to 10 using the SOTA (Self-Organizing Tree Algorithm) clustering algorithm with correlation distance metric. The quality of the obtained clustering was evaluated using the complex clustering quality criterion which is considered both the gene expression profiles distribution relative to center of the clusters where these gene expression profiles are allocated and the centers of the clusters distribution. The result of this stage execution was a selection of the optimal cluster at each of the hierarchical levels which corresponded to the minimum value of the quality criterion. At the next step, we have implemented a classification procedure of the examined objects using four well known binary classifiers—logistic regression, support-vector machine, decision trees and random forest classifier. The effectiveness of the appropriate technique was evaluated based on the use of ROC (Receiver Operating Characteristic) analysis using criteria, included as the components, the errors of both the first and the second kinds. The final decision concerning the extraction of the most informative subset of gene expression profiles was taken based on the use of the fuzzy inference system, the inputs of which are the results of the appropriate single classifiers operation and the output is the final solution concerning state of the patient’s health. To our mind, the implementation of the proposed stepwise procedure of the informative gene expression profiles extraction create the conditions for the increasing effectiveness of the further procedure of gene regulatory networks reconstruction and the following simulation of the reconstructed models considering the subtypes of the disease and/or state of the patient’s health.


2021 ◽  
Author(s):  
Kangning Dong ◽  
Shihua Zhang

Recent advances in spatially resolved transcriptomics have enabled comprehensive measurements of gene expression patterns while retaining spatial context of tissue microenvironment. Deciphering the spatial context of spots in a tissue needs to use their spatial information carefully. To this end, we developed a graph attention auto- encoder framework STGATE to accurately identify spatial domains by learning low-dimensional latent embeddings via integrating spatial information and gene expression profiles. To better characterize the spatial similarity at the boundary of spatial domains, STGATE adopts an attention mechanism to adaptively learn the similarity of neighboring spots, and an optional cell type-aware module through integrating the pre-clustering of gene expressions. We validated STGATE on diverse spatial transcriptomics datasets generated by different platforms with different spatial resolutions. STGATE could substantially improve the identification accuracy of spatial domains, and denoise the data while preserving spatial expression patterns. Importantly, STGATE could be extended to multiple consecutive sections for reducing batch effects between sections and extracting 3D expression domains from the reconstructed 3D tissue effectively.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Takuya Komura ◽  
Masaaki Yano ◽  
Akimitsu Miyake ◽  
Hisashi Takabatake ◽  
Masaki Miyazawa ◽  
...  

Background. Colorectal cancer (CRC), the most common malignancy worldwide, causes inflammation. We explored the inflammatory pathophysiology of CRC by assessing the peripheral blood parameters. Methods. The differences in gene expression profiles of whole blood cells and cell subpopulations between CRC patients and healthy controls were analyzed using DNA microarray. Serum cytokine/chemokine concentrations in CRC patients and healthy controls were measured via multiplex detection immunoassays. In addition, we explored correlations between the expression levels of certain genes of peripheral CD4+ cells and serum chemokine concentrations. Results. The gene expression profiles of peripheral CD4+ cells of CRC patients differed from those of healthy controls, but this was not true of CD8+ cells, CD14+ cells, CD15+ cells, or CD19+ cells. Serum IL-8 and eotaxin-1 levels were significantly elevated in CRC patients, and the levels substantially correlated with the expression levels of certain genes of CD4+ cells. Interestingly, the relationships between gene expression levels in peripheral CD4+ cells and serum IL-8 and eotaxin-1 levels resembled those of monocytes/macrophages, not T cells. Conclusions. Serum IL-8 and eotaxin-1 concentrations increased and were associated with changes in the gene expression of peripheral CD4+ cells in CRC patients.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2277
Author(s):  
Kenji Saito ◽  
Maiko Ito ◽  
Takuya Chiba ◽  
Huijuan Jia ◽  
Hisanori Kato

Many studies have shown the beneficial effects of calorie restriction (CR) on rodents’ aging; however, the molecular mechanism explaining these beneficial effects is still not fully understood. Previously, we conducted transcriptomic analysis on rat liver with short-term and mild-to-moderate CR to elucidate its early response to such diet. Here, we expanded transcriptome analysis to muscle, adipose tissue, intestine, and brain and compared the gene expression profiles of these multiple organs and of our previous dataset. Several altered gene expressions were found, some of which known to be related to CR. Notably, the commonly regulated genes by CR include nicotinamide phosphoribosyltransferase and heat shock protein 90, which are involved in declining the aging process and thus potential therapeutic targets for aging-related diseases. The data obtained here provide information on early response markers and key mediators of the CR-induced delay in aging as well as on age-associated pathological changes in mammals.


2020 ◽  
Vol 40 (5) ◽  
Author(s):  
Xinhua Liu ◽  
Yonglin Peng ◽  
Ju Wang

Abstract Breast cancer is a common malignant tumor among women whose prognosis is largely determined by the period and accuracy of diagnosis. We here propose to identify a robust DNA methylation-based breast cancer-specific diagnostic signature. Genome-wide DNA methylation and gene expression profiles of breast cancer patients along with their adjacent normal tissues from the Cancer Genome Atlas (TCGA) were obtained as the training set. CpGs that with significantly elevated methylation level in breast cancer than not only their adjacent normal tissues and the other ten common cancers from TCGA but also the healthy breast tissues from the Gene Expression Omnibus (GEO) were finally remained for logistic regression analysis. Another independent breast cancer DNA methylation dataset from GEO was used as the testing set. Lots of CpGs were hyper-methylated in breast cancer samples compared with adjacent normal tissues, which tend to be negatively correlated with gene expressions. Eight CpGs located at RIIAD1, ENPP2, ESPN, and ETS1, were finally retained. The diagnostic model was reliable in separating BRCA from normal samples. Besides, chromatin accessibility status of RIIAD1, ENPP2, ESPN and ETS1 showed great differences between MCF-7 and MDA-MB-231 cell lines. In conclusion, the present study should be helpful for breast cancer early and accurate diagnosis.


Author(s):  
Takanari Tanabata ◽  
◽  
Fumiaki Hirose ◽  
Hidenobu Hashikami ◽  
Hajime Nobuhara ◽  
...  

The DNA microarray analysis can explain gene functions by measuring tens of thousands of gene expressions at once and analyzing gene expression profiles that are obtained from the measurement. However, gene expression profiles have such a vast amount of information and therefore most analyses work are done on the data narrowed down by statistical methods, there remains a possibility ofmissing out on genes that consist the factors of phenomena from their evaluations. This study propose a method based on a formal concept analysis to visualize all gene expression profiles and characteristic information that can be obtained from annotation information of each gene so that the user can overview them. In the formal concept analysis, a lattice structure that allows genes to be hierarchically classified and made viewable is built based on the inclusion relations of attributes from a context table in which gene is the object and the attributes are expression profiles and binarized characteristic information. With the proposed method, the user can change the overview state by adjusting the expression ratio and the binary state of characteristic information, understand the relational structure of gene expressions, and carry out analyses of gene functions. We develop software to practice the proposed method, and then ask a biologist to evaluate effectiveness of proposed method applied to a function analysis of genes related to blue light signaling of rice seedlings.


Sign in / Sign up

Export Citation Format

Share Document