scholarly journals 5-[4-(tert-Butyl)cyclohexylidene]-2-thioxothiazolidin-4-one

Molbank ◽  
10.3390/m1281 ◽  
2021 ◽  
Vol 2021 (4) ◽  
pp. M1281
Author(s):  
Serhii Holota ◽  
Andrii Lozynskyi ◽  
Yulian Konechnyi ◽  
Yulia Shepeta ◽  
Roman Lesyk

The Knoevenagel reaction is an essential synthetic tool in the organic and medicinal chemistry of thiazolidin-4-one derivatives. In the present work, the application of ethylenediamine diacetate (EDDA) as an effective catalyst for the interaction of 2-thioxothiazolidin-4-one with 4-(tert-butyl)cyclohexanone is proposed. The structure of novel synthesized 5-[4-(tert-butyl)cyclohexylidene]-2-thioxothiazolidin-4-one (yield 61%) was confirmed by 1H-, 13C-NMR, LC-MS, IR, and UV spectra. Drug-like properties of the synthesized compound were evaluated in silico using the SwissAdme, and their potential antimicrobial activity against 15 strains of Gram-positive and Gram-negative bacteria as well as yeasts was evaluated in vitro. The synthesized compound possesses satisfactory drug-like parameters and promising antimicrobial properties and presents interest as a prospective intermediate for the forthcoming design of biologically active small molecules.

Molbank ◽  
10.3390/m1078 ◽  
2019 ◽  
Vol 2019 (3) ◽  
pp. M1078 ◽  
Author(s):  
Kazakova ◽  
Brunel ◽  
Khusnutdinova ◽  
Negrel ◽  
Giniyatullina ◽  
...  

Synthesis of A-ring-modified lupane, oleanane and ursane type triterpenoid conjugates with spermidine through an aldimine linkage or diethylentriamine via an amide bond is described. These derivatives were evaluated for their in vitro antimicrobial properties against human pathogens. Except for derivatives 1 and 7, all compounds have moderate to weak minimum inhibitory concentrations (MICs) against Gram-positive Staphylococcus aureus bacteria, with MICs varying from 3.125 to 200 µM. Compound 11 is efficient against Escherichia coli and Pseudomonas aeruginosa, with MICs of 25 and 50 µM, respectively, while all other derivatives do not possess important antimicrobial activities against these Gram-negative bacteria.


2019 ◽  
Vol 31 (6) ◽  
pp. 1398-1404
Author(s):  
NEDRA TOUJ ◽  
ABDULLAH SULAIMAN AL-AYED ◽  
NACEUR HAMDI

The synthesis of metallo-phthalocyanines complexes (M = Co, Ni, Cu, Zn) containing azo dye were described in this study. The metallophthalocyanines have been supported by elemental analysis, UV-visible, FT-IR and NMR. The aggregation of phthalocyanine compounds was investigated in different solvents and concentrations. The newly synthesized metallophthalocyanines possess modest antibacterial activity against various Gram-positive and Gram-negative bacteria. Moreover, these complexes have been tested as antioxidant and presented remarkable activities by two different in vitro chemical assays. They were able to reduce DPPH % radical with IC50 values ranging from 3.8 to 7.5 μmol L-1 and some of them also reduced ABTS % radical cation.


2021 ◽  
Author(s):  
Mansour Amin ◽  
Sousan Akrami ◽  
Farkhondeh Haghparasty ◽  
Atiyeh Hakimi

Abstract Background: Today, due to the increasing use of chemical drugs and the spread of microbial resistance to synthetic antibiotics, as well as side effects of drugs, the identification and introduction of plant species with medicinal and antimicrobial properties is very important. In this study, the antimicrobial properties of essential oils and extracts of 6 medicinal plants from Ahvaz region, Iran against 12 Gram-positive and Gram-Negative Bacteria were evaluated. Methods: The EOs and extracts were extracted using water distillation with Clevenger apparatus. The antimicrobial properties and determination of the minimum concentration of growth inhibition of herbals were investigated by the modified E-test method. Results: All analyzed extracts and EOs showed antibacterial effects. The antimicrobial activity of Oliveria decumbens was strongest herbals with the least MIC ranges (0.008-0.1 mg/ml for EO, 0.9-20 mg/ml for extract), while the antibacterial effects of Artemisia vulgaris extract and Glycyrrhiza glabra EO with the highest MIC were weaker than the others. According to the effectiveness of plant extracts on bacteria, Pseudomonas aeruginosa was resistant to all extracts except Oliveria decumbens. In contrast, Bacillus cereus was more sensitive than other strains against analyzed EOs and extracts.Conclusions: It seems that due to the antimicrobial properties of the extracts and essential oils observed in this study, they can be used as an alternative to antimicrobial drugs after more extensive studies.


2019 ◽  
Vol 12 (2) ◽  
pp. 82 ◽  
Author(s):  
Boris Vishnepolsky ◽  
George Zaalishvili ◽  
Margarita Karapetian ◽  
Tornike Nasrashvili ◽  
Nato Kuljanishvili ◽  
...  

Antimicrobial peptides (AMPs) have been identified as a potentially new class of antibiotics to combat bacterial resistance to conventional drugs. The design of de novo AMPs with high therapeutic indexes, low cost of synthesis, high resistance to proteases and high bioavailability remains a challenge. Such design requires computational modeling of antimicrobial properties. Currently, most computational methods cannot accurately calculate antimicrobial potency against particular strains of bacterial pathogens. We developed a tool for AMP prediction (Special Prediction (SP) tool) and made it available on our Web site (https://dbaasp.org/prediction). Based on this tool, a simple algorithm for the design of de novo AMPs (DSP) was created. We used DSP to design short peptides with high therapeutic indexes against gram-negative bacteria. The predicted peptides have been synthesized and tested in vitro against a panel of gram-negative bacteria, including drug resistant ones. Predicted activity against Escherichia coli ATCC 25922 was experimentally confirmed for 14 out of 15 peptides. Further improvements for designed peptides included the synthesis of D-enantiomers, which are traditionally used to increase resistance against proteases. One synthetic D-peptide (SP15D) possesses one of the lowest values of minimum inhibitory concentration (MIC) among all DBAASP database short peptides at the time of the submission of this article, while being highly stable against proteases and having a high therapeutic index. The mode of anti-bacterial action, assessed by fluorescence microscopy, shows that SP15D acts similarly to cell penetrating peptides. SP15D can be considered a promising candidate for the development of peptide antibiotics. We plan further exploratory studies with the SP tool, aiming at finding peptides which are active against other pathogenic organisms.


2019 ◽  
Vol 10 ◽  
pp. 1864-1872
Author(s):  
Prof. Teodora P. Popova

The effect of ionized aqueous solutions (anolytes and catholyte) in the processing of fruits (cherries, morellos, and strawberries) for decontamination has been tested. Freshly prepared analytes and catholyte without the addition of salts were used, as well as stored for 7 months anolytes, prepared with 0.5% NaCl and a combination of 0.5% NaCl and 0.5% Na2CO3. The anolyte prepared with a combination of 0.5% NaCl and 0.5% Na2CO3, as well as the anolyte obtained with 0.5% NaCl, exhibit high antimicrobial activity against the surface microflora of strawberries, cherries, and sour cherries. They inactivate E. coli for 15 minutes. The other species of the fam. Enterobacteriaceae were also affected to the maximum extent, as is the total number of microorganisms, especially in cherries and sour cherries. Even stored for 7 months, they largely retain their antimicrobial properties. Anolyte and catholyte, obtained without the addition of salts, showed a lower effect on the total number of microorganisms, but had a significant effect on Gram-negative bacteria, and especially with regard to the sanitary indicative E. coli.


2020 ◽  
Vol 20 (3) ◽  
pp. 192-208 ◽  
Author(s):  
Talita Odriane Custodio Leite ◽  
Juliana Silva Novais ◽  
Beatriz Lima Cosenza de Carvalho ◽  
Vitor Francisco Ferreira ◽  
Leonardo Alves Miceli ◽  
...  

Background: According to the World Health Organization, antimicrobial resistance is one of the most important public health threats of the 21st century. Therefore, there is an urgent need for the development of antimicrobial agents with new mechanism of action, especially those capable of evading known resistance mechanisms. Objective: We described the synthesis, in vitro antimicrobial evaluation, and in silico analysis of a series of 1H-indole-4,7-dione derivatives. Methods: The new series of 1H-indole-4,7-diones was prepared with good yield by using a copper(II)- mediated reaction between bromoquinone and β-enamino ketones bearing alkyl or phenyl groups attached to the nitrogen atom. The antimicrobial potential of indole derivatives was assessed. Molecular docking studies were also performed using AutoDock 4.2 for Windows. Characterization of all compounds was confirmed by one- and two-dimensional NMR techniques 1H and 13C NMR spectra [1H, 13C – APT, 1H x 1H – COSY, HSQC and HMBC], IR and mass spectrometry analysis. Results: Several indolequinone compounds showed effective antimicrobial profile against Grampositive (MIC = 16 µg.mL-1) and Gram-negative bacteria (MIC = 8 µg.mL-1) similar to antimicrobials current on the market. The 3-acetyl-1-(2,5-dimethylphenyl)-1H-indole-4,7-dione derivative exhibited an important effect against different biofilm stages formed by a serious hospital life-threatening resistant strain of Methicillin-Resistant Staphylococcus aureus (MRSA). A hemocompatibility profile analysis based on in vitro hemolysis assays revealed the low toxicity effects of this new series. Indeed, in silico studies showed a good pharmacokinetics and toxicological profiles for all indolequinone derivatives, reinforcing their feasibility to display a promising oral bioavailability. An elucidation of the promising indolequinone derivatives binding mode was achieved, showing interactions with important sites to biological activity of S. aureus DNA gyrase. These results highlighted 3-acetyl-1-(2-hydroxyethyl)-1Hindole- 4,7-dione derivative as broad-spectrum antimicrobial prototype to be further explored for treating bacterial infections. Conclusion: The highly substituted indolequinones were obtained in moderate to good yields. The pharmacological study indicated that these compounds should be exploited in the search for a leading substance in a project aimed at obtaining new antimicrobials effective against Gram-negative bacteria.


ACS Omega ◽  
2021 ◽  
Author(s):  
Faizan Abul Qais ◽  
Mohammad Shavez Khan ◽  
Iqbal Ahmad ◽  
Fohad Mabood Husain ◽  
Rais Ahmad Khan ◽  
...  

2006 ◽  
Vol 50 (6) ◽  
pp. 2261-2264 ◽  
Author(s):  
Hee-Soo Park ◽  
Hyun-Joo Kim ◽  
Min-Jung Seol ◽  
Dong-Rack Choi ◽  
Eung-Chil Choi ◽  
...  

ABSTRACT DW-224a showed the most potent in vitro activity among the quinolone compounds tested against clinical isolates of gram-positive bacteria. Against gram-negative bacteria, DW-224a was slightly less active than the other fluoroquinolones. The in vivo activities of DW-224a against gram-positive bacteria were more potent than those of other quinolones.


2006 ◽  
Vol 50 (7) ◽  
pp. 2478-2486 ◽  
Author(s):  
Andrea Giacometti ◽  
Oscar Cirioni ◽  
Roberto Ghiselli ◽  
Federico Mocchegiani ◽  
Fiorenza Orlando ◽  
...  

ABSTRACT Sepsis remains a major cause of morbidity and mortality in hospitalized patients, despite intense efforts to improve survival. The primary lead for septic shock results from activation of host effector cells by endotoxin, the lipopolysaccharide (LPS) associated with cell membranes of gram-negative bacteria. For these reasons, the quest for compounds with antiendotoxin properties is actively pursued. We investigated the efficacy of the amphibian skin antimicrobial peptide temporin L in binding Escherichia coli LPS in vitro and counteracting its effects in vivo. Temporin L strongly bound to purified E. coli LPS and lipid A in vitro, as proven by fluorescent displacement assay, and readily penetrated into E. coli LPS monolayers. Furthermore, the killing activity of temporin L against E. coli was progressively inhibited by increasing concentrations of LPS added to the medium, further confirming the peptide's affinity for endotoxin. Antimicrobial assays showed that temporin L interacted synergistically with the clinically used β-lactam antibiotics piperacillin and imipenem. Therefore, we characterized the activity of temporin L when combined with imipenem and piperacillin in the prevention of lethality in two rat models of septic shock, measuring bacterial growth in blood and intra-abdominal fluid, endotoxin and tumor necrosis factor alpha (TNF-α) concentrations in plasma, and lethality. With respect to controls and single-drug treatments, the simultaneous administration of temporin L and β-lactams produced the highest antimicrobial activities and the strongest reduction in plasma endotoxin and TNF-α levels, resulting in the highest survival rates.


Sign in / Sign up

Export Citation Format

Share Document