scholarly journals Preparation and Characterization of Expanded Clay-Paraffin Wax-Geo-Polymer Composite Material

Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2191 ◽  
Author(s):  
Ahmed Hassan ◽  
Najif Ismail ◽  
Abdel-Hamid Mourad ◽  
Yasir Rashid ◽  
Mohammad Laghari

Paraffin-based phase change material (PCM) is impregnated into the pores of lightweight expanded clay aggregate (LECA) through vacuum impregnation to develop PCM containing macro-capsules of LECA. Three different grades of LECA varying in size and morphology are investigated to host the PCM to determine the impregnation effectiveness, viability for coating, and its stability. The produced LECA-PCM is coated with geopolymer paste (GP) to provide leak proofing during the phase change. The PCM is thermophysically characterized by employing differential scanning calorimetry (DSC) and the temperature history method (THM) to determine the phase transition and the latent heat. The stability of the macro-capsules is determined by weight loss through rapid thermal cycling (RTC) at elevated temperatures. Leakage of the PCM is tested using the diffusion-oozing circle test (DOCT). The results show that the GP coated LECA-PCM macro-capsules achieved 87 wt % impregnation efficiencies and no noticeable loss of PCM, which indicates leak proofing of the developed capsules up to 1000 RTC.

2021 ◽  
pp. 152808372110417
Author(s):  
Zhou Zhao ◽  
Ningning Tong ◽  
Hong Song ◽  
Yan Guo ◽  
Jinmei Wang

In this work, a phase-change energy storage nonwoven fabric was made of polyurethane phase-change material (PUPCM) by a non-woven melt-blown machine. Polyethylene glycol 2000 was used as the phase transition unit and diphenyl-methane-diisocyanate as the hard segment to prepare PUPCM. Thermal stability of the PUPCM was evaluated through thermal stability analysis. The performance of pristine PUPCM was determined by Fourier transform infrared spectroscopy and differential scanning calorimetry to analyze the spinning technology of spinning temperature and the stretching process. Phase-change energy storage nonwoven fabric (413.22 g/m2) was prepared, and the morphology, solid–solid exothermic phase transition, mechanical properties, and the structures were characterized. The enthalpy of solid–solid exothermic phase transition reached 60.17 mJ/mg (peaked at 23.14°C). The enthalpy of solid–solid endothermic phase transition reached 67.09 mJ/mg (peaked at 34.34°C). The strength and elongation of phase-change energy storage nonwoven fabric were found suitable for garments and tent fabrics.


2013 ◽  
Vol 750-752 ◽  
pp. 1150-1154
Author(s):  
Qi Song Shi ◽  
Lin Cao ◽  
Lei Wang ◽  
Xiao Feng ◽  
Xin Yi Jin ◽  
...  

In this study, a novel phase change material was prepared by coordinating rare earth Tb3+ions to the carboxylate groups of a poly (ethylene glycol).The properties of the material were characterized by differential scanning calorimetry (DSC), infrared spectroscopy (IR) and fluorescence spectroscopy. The synthesis and characterization a novel phase change luminescent Tb-PEG/SA material were described in this paper. The result show that this modified PEG material show both good phase change properties and excellent luminescent properties.


Author(s):  
Navin Kumar ◽  
Debjyoti Banerjee

“T-history method” is widely used for characterization of thermal properties of Phase Change Material (PCM). In this study improvements are proposed to the experimental protocol used in the conventional T-History method. Experimental validation of numerical predictions for various samples of PCM were performed using the proposed measurement technique. This enabled the evaluation of the improvements in the proposed approach as well as for analyzing the experimental results. This involved measurement of temperature at the surface and in the center of the PCM samples (as well as that of the reference sample materials). The proposed modifications enable enhanced accuracy for estimation of the material properties (when compared to the conventional approaches). The estimates from the proposed approach were observed to be within 10% of the measured values obtained using Differential Scanning Calorimetry (DSC). The proposed approach is amenable to testing large sample sizes, is simpler to implement, provides more rapid data collection and is more cost-effective than that obtained using standard DSC protocols.


2015 ◽  
Vol 749 ◽  
pp. 415-419
Author(s):  
Zbyšek Pavlík ◽  
Anton Trník ◽  
Milena Pavlíková ◽  
Jan Fořt ◽  
Robert Černý

A Phase Change Material (PCM) based on paraffinic wax encapsulated in polymer shell is used for improvement of the heat storage capacity of commercially produced dry plaster, originally developed for both exterior and interior hand application. The composition of PCM modified plasters is designed with respect to the workability of fresh mixtures. Characterization of applied PCM is done using the measurement of particle size distribution, powder density, and matrix density. For the newly developed composite plasters, basic physical properties, mechanical properties, and thermal properties are accessed, whereas a specific attention is paid to the Difference Scanning Calorimetry (DSC) analysis. Using DSC measurement, temperatures of phase change transitions and phase changes enthalpies are identified. The obtained results show that the temperature induced phase change can be used for the release and storage of thermal energy in buildings, which can be beneficially utilized for saving the energy spent for the achievement of the indoor thermal comfort.


2020 ◽  
Vol 10 (24) ◽  
pp. 9116
Author(s):  
Jan Fořt ◽  
Jan Kočí ◽  
Jaroslav Pokorný ◽  
Luboš Podolka ◽  
Michal Kraus ◽  
...  

Ambient comfort maintenance accompanied by excessive energy consumption is hugely criticized concerning the limited sustainability of the building sector in the long-term. In this sense, the energy reduction strategies based on the employment of passive air-control techniques are viewed as a prospective solution for improved energy performance. In order to contribute to this significant issue, this paper is aimed at the design and material characterization of novel plaster with an improved thermal and humidity control performance. For this purpose, a form-stable diatomite/dodecanol-based phase change material together with superabsorbent polymer are used as admixtures for the passive moderation of indoor air quality by newly designed modified plasters. The experimental assessment of the functional properties by means of mechanical strength, thermal conductivity, and hygric properties is performed. Considering the goal of the paper, particular attention is paid to the characterization of water vapor storage and moisture buffering according to the Nordtest method. Differential scanning calorimetry is employed for the description of phase change intervals as well as the specific enthalpy of phase change. The obtained results point to significant improvements in the hygroscopic performance and increased thermal energy storage that can be used for passive moderation of the indoor temperature and reduction of the relative humidity swings.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3033
Author(s):  
Anastasia Stamatiou ◽  
Lukas Müller ◽  
Roger Zimmermann ◽  
Jamie Hillis ◽  
David Oliver ◽  
...  

Latent heat storage units for refrigeration processes are promising as alternatives to water/glycol-based storage due to their significantly higher energy densities, which would lead to more compact and potentially more cost-effective storages. In this study, important thermophysical properties of five phase change material (PCM) candidates are determined in the temperature range between −22 and −35 °C and their compatibility with relevant metals and polymers is investigated. The goal is to complement existing scattered information in literature and to apply a consistent testing methodology to all PCMs, to enable a more reliable comparison between them. More specifically, the enthalpy of fusion, melting point, density, compatibility with aluminum, copper, polyethylene (PE), polypropylene (PP), neoprene and butyl rubber, are experimentally determined for 1-heptanol, n-decane, propionic acid, NaCl/water mixtures, and Al(NO3)3/water mixtures. The results of the investigations reveal individual strengths and weaknesses of the five candidates. Further, 23.3 wt.% NaCl in water stands out for its very high volumetric energy density and n-decane follows with a lower energy density but better compatibility with surrounding materials and supercooling performance. The importance of using consistent methodologies to determine thermophysical properties when the goal is to compare PCM performance is highlighted.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 107
Author(s):  
Evelyn Reyes-Cueva ◽  
Juan Francisco Nicolalde ◽  
Javier Martínez-Gómez

Environmental problems have been associated with energy consumption and waste management. A solution is the development of renewable materials such as organic phase change materials. Characterization of new materials allows knowing their applications and simulations provide an idea of how they can developed. Consequently, this research is focused on the thermal and chemical characterization of five different avocado seed oils depending on the maturity stage of the seed: 100% unripe, 25% mature-75% unripe, 50% mature-50% unripe, 75% mature-25% unripe, and 100% mature. The characterization was performed by differential scanning calorimetry, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The best oil for natural environments corresponded to 100% matured seed with an enthalpy of fusion of 52.93 J·g−1, and a degradation temperature between 241–545 °C. In addition, the FTIR analysis shows that unripe seed oil seems to contain more lipids than a mature one. Furthermore, a simulation with an isothermal box was conducted with the characterized oil with an initial temperature of −14 °C for the isothermal box, −27 °C for the PCM box, and an ambient temperature of 25 °C. The results show that without the PCM the temperature can reach −8 °C and with it is −12 °C after 7 h, proving its application as a cold thermal energy system.


2013 ◽  
Vol 785-786 ◽  
pp. 123-126
Author(s):  
Ying Ye ◽  
Kun Yan Wang ◽  
Ge Chang ◽  
Qian Ying Jiang

Polypropylene/organoclay modified by dodecanol phase change material were prepared by melt blending method. The thermal stability and crystallization behavior was studied by thermogravimetry (TG), differential scanning calorimetry (DSC), and X-ray diffraction (XRD). TG results indicated the window of processing of PP could be improved by adding small amount organoclay modified by dodecanol to the blend. DSC showed the organoclay modified by dodecanol affected the crystallization behavior of PP as heterogeneous nucleation agent. XRD results show that the organoclay modified by dodecanol does not change the crystal structure in the blends but only decrease the intensity of the diffraction peak.


Sign in / Sign up

Export Citation Format

Share Document