scholarly journals Anodic Fabrication of Ti-Ni-Si-O Nanostructures on Ti10Ni5Si Alloy

Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1315 ◽  
Author(s):  
Ting Li ◽  
Dongyan Ding ◽  
Nan Li

Ti-Ni-Si-O nanostructures were synthesized on Ti10Ni5Si alloy through an electrochemical anodization in electrolyte solutions containing ammonium fluoride (NH4F). The anodic oxide structures were affected by the electrochemical anodization parameters, including the electrolyte viscosity, water content, anodization potential and anodization time. Using an anodization potential of 40 V for 90 min in an ethylene glycol/glycerol electrolyte with 3 vol.% deionized water, highly ordered self-organized nanotube arrays were obtained in the α-Ti phase region of the alloy substrate, with an average inner diameter of 70 nm and a wall thickness of about 12 nm. Self-organized nanopore structures with an average pore diameter of 25 nm grew in the Ti5Si3 phase region. Only etching pits were found in the Ti2Ni phase region. The Ti-Ni-Si-O nanostructures were characterized using scanning electron microscopy and energy dispersive spectroscopy. In addition, a formation mechanism of different nanostructures was presented.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
O. Zakir ◽  
R. Idouhli ◽  
M. Elyaagoubi ◽  
M. Khadiri ◽  
A. Aityoub ◽  
...  

In this study, a self-organized nanotubular titanium dioxide (TiO2) array was successfully produced by anodizing pure titanium in a mixture of glycerol, distilled water (8% vol.), and ammonium fluoride using a dual electrode system. The size control and distribution of the nanopores were performed in a DC voltage range varying from 30 V to 60 V. The diameter of TiO2 nanopores varies from 59 to 128 nm depending on the anodizing voltage. Energy-dispersive X-ray spectroscopy (EDX) analysis reveals that the as-prepared films are essentially composed of TiO2. According to the X-ray diffraction (XRD) and Raman spectroscopy analysis, the nanotubular arrays of TiO2 annealed at 600°C for 2 hours are composed of a phase mixture of anatase and rutile. Mott-Schottky analysis showed that the TiO2 nanotubes are consistent with an n-type semiconductor with a donor density of about 1017 cm-3. Preliminary results on the photocatalytic degradation of a pharmaceutical pollutant showed that the TiO2 nanotubes can be used as a promising material for application in wastewater treatment.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012073
Author(s):  
C U Bhadra ◽  
D Henry Raja ◽  
D Jonas Davidson

Abstract Due to its multitude of applications, titanium oxide is one of the most coveted and most sought-after materials. The above experiment demonstrated that TiO2 nanotube arrays might be formed by electrochemical anodization of titanium foil. The 0.25 wt% ammonium fluoride (NH4F) was added to a solution of 99% ethylene glycol. Anodization is carried out at a constant DC voltage of 12V for 1 hour. Then, the annealing process is carried out for 1 hour at 4800C, which is known as an annealing. FE-SEM were utilized to evaluate the surface morphology of the nanotube arrays that were made. At the wavelength of 405 nm, sharply peaked photoluminescence intensity was observed, which corresponded tothe band gap energy (3.2 eV) of the anatase TiO2 phase. Since free excitations appear at 391 and 496 nm, and since oxygen vacancies are developed on the surface of titania nanotube arrays, it is reasonable to conclude that free excitations and oxygen vacancies are the causes of humps at 391 and 496 nm, and that they may also be present at 412 and 450 nm. FESEM results showed uniformly aligned TiO2 nanotube arrays with an inner diameter of 100 nm and a wall thickness of 50 nm


2013 ◽  
Vol 829 ◽  
pp. 907-911 ◽  
Author(s):  
Meysam Naghizadeh ◽  
Saber Ghannadi ◽  
Hossein Abdizadeh ◽  
Mohammad Reza Golobostanfard

Titanium dioxide (TiO2) nanotube arrays were prepared at room temperature by electrochemical anodization of a pure titanium foil in electrolyte solutions containing ethylene glycol as a solvent and de-ionized water and ammonium fluoride as additives. Since the morphology and size of TiO2 nanotubes play critical roles in determining their performance, the control of geometrical parameters of the nanotube arrays including length and inner diameter are of great importance. The present research demonstrates the significant effects of fluoride concentration and water content in anodizing electrolyte on formation of nanotubes and their dimensions. Scanning electron microscope investigation shows that nanotube arrays are no longer formed in very low or very high concentration of ammonium fluoride. Also, increase in fluoride concentration causes increase in lengths and inner diameters of the nanotubes. Moreover, it is evident that the maximum nanotube growth rate was achieved in medium amount of water. In addition, it is found that the nanotube inner diameter increases by adding more water to the solution.


2012 ◽  
Vol 620 ◽  
pp. 173-178 ◽  
Author(s):  
Chin Wei Lai ◽  
Srimala Sreekantan

We report on the effect of the tungsten (W) cathode in controlling the morphology and properties of titanium (Ti) anodic oxide layer via an electrochemical anodization process. The content of ammonium fluoride (NH4F) was varied in ethylene glycol (EG) electrolyte containing hydrogen peroxide (H2O2) in order to obtained the high ordered nanotubular structure. When amount of NH4F was upto 5 wt%, highly ordered WO3-TiO2nanotubes structure was observed. If insufficient amount of NH4F is applied, the nanoporous structure will be favored. Highly ordered WO3-TiO2nanotubes structure exhibited higher photocurrent density ( 0.9 mA/cm2) as compared to the WO3-TiO2nanoporous structure.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4743
Author(s):  
Marta Michalska-Domańska ◽  
Magdalena Łazińska ◽  
Justyna Łukasiewicz ◽  
Johannes M. C. Mol ◽  
Tomasz Durejko

The anodization of commercially pure Ti alloy (99.5 wt %) and two biomedical titanium alloys, Ti6Al7Nb and Ti6Al4V, was performed, and the resulting anodic oxides were studied. The biomedical alloys were made by Laser Engineered Net Shaping. The glycol-based and glycerol-based electrolytes with 0.3 M ammonium fluoride and 2 wt % of deionized water content were tested. It was found that electrolyte type as well as the chemical composition of the base substrate affected the final morphology and chemical composition of the anodic oxide formed. A higher current density, ionic mobility, and oxide growth rate were obtained in glycol-based electrolyte as compared to those obtained in glycerol-based electrolyte for all tested alloys. A self-organized nanotubular and nanoporous morphology of the anodic oxide in both types of electrolyte was obtained. In each electrolyte, the alloy susceptibility to oxidation increased in the following order: Ti6Al4V < Ti 99.5% < Ti6Al7Nb, which can be correlated to the oxidation susceptibility of the base titanium alloy. It was observed that the more impurities/alloying elements in the substrate, the lower the pore diameters of anodic oxide. There was a higher observed incorporation of electrolyte species into the anodic oxide matrix in the glycerol-based electrolyte compared with that in glycol-based electrolyte.


2013 ◽  
Vol 16 (2) ◽  
pp. 5-12
Author(s):  
Tien Thuy Thai ◽  
Quyen Van Le ◽  
Tuyen Van Au ◽  
Nhi Hai Ha ◽  
Hung Huu Khanh Nguyen ◽  
...  

Self–organized TiO2 nanotube arrays were synthesized by anodization of Ti foil in ethylene glycol electrolyte containing water and NH4F. The photocatalytic activities of fabricated samples were evaluated by the degradation of methylene blue under UV A irradiation. Various factors such as electrolyte composition, voltage, anodization time, annealing time were also investigated in order to find out the conditions for synthesis of TiO2 nanotube arrays which show the highest photocatalytic activity. The as–synthesized TiO2 nanotubes were highly ordered, with the inner diameter of 6–130nm and the length of 2–3μm. The nanotubes presented a good adhesion with the Ti foil. The photocatalytic efficiency of the best sample (2x2cm area) reached 69% in the photo-degradation of 100ml of 5.10–6M methylene blue after 3 hours under UV A irradiation.


2006 ◽  
Vol 326-328 ◽  
pp. 437-440 ◽  
Author(s):  
Dae Jin Yang ◽  
Ho Gi Kim ◽  
Won Youl Choi

Thin-film titania templates were fabricated under different processing conditions. The dependencies of pore morphology and pore formation rate on process parameters were evaluated. It was found that under optimized electrolyte condition and anodizing voltage, a self-organized nanostructure consisting of porous TiO2 was obtained. 1 M Na2SO4 solution with the addition of 0.35 wt.% NaF and voltage potential of 30V were used. SEM images of templates showed very thin layer of ~70 nm thickness with worm-like pores. Pore diameter and average pore spacing of center to center on the surface were ~10 nm and 20 nm, respectively. The nanoporous TiO2 thin film will be very useful gas sensing and photocatalytic materials due to their large surface areas and high reactivities.


2011 ◽  
Vol 219-220 ◽  
pp. 1333-1336 ◽  
Author(s):  
Shi Kai Liu ◽  
Yan Tao Li ◽  
Hai Bin Yang ◽  
Wen Jun Zou ◽  
Zheng Xin Li

Nanotubular films on the surface of Ti-2Al-1.5Mn (TC1) alloy were fabricated by electrochemical anodization technique in aqueous ammonium fluoride solutions at 20V for 3h. The photoelectrochemical activities of the nanotube arrays were investigated, as well as their phase, structure, composition and photoabsorption properties. The photo-absorption in the visible region and the photoelectrochemical response were improved obviously. It is attributed to the Mn ion doping of TiO2 lattices. Furthermore, the resulted nanotube arrays are expected to have bright application prospects for solar utilization.


2017 ◽  
Vol 68 (3) ◽  
pp. 483-486
Author(s):  
Constantin Sorin Ion ◽  
Mihaela Bombos ◽  
Gabriel Vasilievici ◽  
Dorin Bombos

Desulfurisation of atmospheric distillation gasoline and gas oil was performed by adsorption process on Fe/ bentonite. The adsorbent was characterized by determining the adsorption isotherms, specific surface area, pore volume and average pore diameter. Adsorption experiments of atmospheric distillation gasoline and gas oil were performed in continuous system at 280�320oC, 5 atm and volume hourly space velocities of 1�2 h-1. The efficiency of adsorption on Fe / bentonite was better at desulphurisation of gasoline versus gas oil.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Denise S. Cordeiro ◽  
Fernando L. Cassio ◽  
Larissa Ciccotti ◽  
Thiago L. R. Hewer ◽  
Paola Corio ◽  
...  

AbstractPraseodymium doped TiO2 nanoparticles were successfully prepared by the sol–gel method and characterized by X-ray powder diffraction, N2 adsorption–desorption isotherm, and UV–vis spectroscopy. The effects of the dopant on the crystallite size, specific surface area, average pore diameter, pore volume, and bandgap energy were investigated. The photocatalytic activity of the catalysts was evaluated by bisphenol A degradation and mineralization, which is a representative endocrine disruptor. Furthermore, under visible light irradiation the Pr-modified TiO2 photocatalysts exhibited higher photocatalytic efficiency than unmodified TiO2. When praseodymium was loaded (1.0–5.0%) onto the surface of TiO2, the rates of degradation and mineralization were increased 3–5 times.


Sign in / Sign up

Export Citation Format

Share Document