scholarly journals The Phase Diagram and Exotic Magnetostrictive Behaviors in Spinel Oxide Co(Fe1−xAlx)2O4 System

Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1685 ◽  
Author(s):  
Chao Zhou ◽  
Azhen Zhang ◽  
Tieyan Chang ◽  
Yusheng Chen ◽  
Yin Zhang ◽  
...  

We report the magnetic and magnetostrictive behaviors of the pseudobinary ferrimagnetic spinel oxide system (1−x)CoFe2O4–xCoAl2O4 [Co(Fe1−xAlx)2O4], with one end-member being the ferrimagnetic CoFe2O4 and the other end-member being CoAl2O4 that is paramagnetic above 9.8 K. The temperature spectra of magnetization and magnetic susceptibility were employed to detect the magnetic transition temperatures and to determine the phase diagram of this system. Composition dependent and temperature dependent magnetostrictive behaviors reveal an exotic phase boundary that separates two ferrimagnetic states: At room temperature and under small magnetic fields (∼500 Oe), Fe-rich compositions exhibit negative magnetostriction while the Al-rich compositions exhibit positive magnetostriction though the values are small (<10 ppm). Moreover, the compositions around this phase boundary at room temperature (x = 0.35, 0.4, 0.45, 0.5) exhibit near-zero magnetostriction and enhanced magnetic susceptibility, which may be promising in the applications for magnetic cores, current sensors, or magnetic shielding materials.

2018 ◽  
Vol 20 (27) ◽  
pp. 18484-18490 ◽  
Author(s):  
Yin Zhang ◽  
Jieqiong Wang ◽  
Xiaoqin Ke ◽  
Tieyan Chang ◽  
Fanghua Tian ◽  
...  

Enhanced MCE with zero thermal hysteresis is achieved in Ni50Mn36Sb14−xInx by constructing a MPB-involved phase diagram.


2013 ◽  
Vol 42 (41) ◽  
pp. 14836 ◽  
Author(s):  
Rupam Sen ◽  
Dasarath Mal ◽  
Armandina M. L. Lopes ◽  
Paula Brandão ◽  
João P. Araújo ◽  
...  

1993 ◽  
Vol 07 (01n03) ◽  
pp. 867-870 ◽  
Author(s):  
H. SHIRAISHI ◽  
T. HORI ◽  
Y. YAMAGUCHI ◽  
S. FUNAHASHI ◽  
K. KANEMATSU

The magnetic susceptibility measurements have been made on antiferromagnetic compounds Mn1–xFexSn2 and the magnetic phase diagram was illustrated. The high temperature magnetic phases I and III, major phases, were analyzed on the basis of molecular field theory and explained the change of magnetic structure I⇌III occured at x≈0.8.


Author(s):  
Rachel Orenstein ◽  
James P. Male ◽  
Michael Toriyama ◽  
Shashwat Anand ◽  
G. Jeffrey Snyder

A new understanding of the MgSi–MgSn miscibility gap is reached through phase boundary mapping the Mg–Si–Sn ternary phase diagram.


Author(s):  
Wilmar S. Torres ◽  
Noemi R. Checca ◽  
Flávio Garcia ◽  
Alexandre Mello ◽  
Andre L. Rossi ◽  
...  

2011 ◽  
Vol 8 (4) ◽  
pp. 1005-1011
Author(s):  
Baghdad Science Journal

Many complexes of 3,5-dimethyl-1H-pyrazol-1-yl phenyl methanone with Cr(III), Co(II), Ni(II), Cu(II) and Cd(II) were synthesized and characterized by FT-IR, UV/visible spectra, elemental analysis, room temperature magnetic susceptibility and molar conductivity. Cd(II) complex was expected to have tetrahedral structure while all the other complexes were expected to have an octahedral structure.


2018 ◽  
Vol 60 (4) ◽  
pp. 670
Author(s):  
С.С. Аплеснин ◽  
М.Н. Ситников ◽  
А.М. Живулько

AbstractThe capacity and the dielectric loss tangent of a Gd_ x Mn_1– x Se ( x ≤ 0.2) solid solution have been measured in the frequency range 1–300 kHz without a magnetic field and in a magnetic field of 8 kOe in the temperature range 100–450 K, and the magnetic moment of the solid solution has been measured in a field of 8.6 kOe. The magnetocapacity effect and the change in the magnetocapacity sign have been observed in room temperature in the paramagnetic region. A correlation of the changes in the dielectric permittivity and the magnetic susceptibility with temperature has been revealed. The magnetocapacity is described using the model with orbital electron ordering and the Maxwell–Wagner model.


Sign in / Sign up

Export Citation Format

Share Document