scholarly journals Through-Process Finite Element Modeling for Warm Flanging Process of Large-Diameter Aluminum Alloy Shell of Gas Insulated (Metal-Enclosed) Switchgear

Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1784
Author(s):  
Da-Wei Zhang ◽  
Tian-Lin Shi ◽  
Sheng-Dun Zhao

The large diameter metal shell component (LDMSC) is an important part of gas insulated (metal-enclosed) switchgear (GIS). The LDMSC with multi branches is filled with gas under certain pressure. The plastic forming process is an efficient approach to manufacturing the high reliability LDMSC. The warm flanging process has been widely used to form LDMSC using aluminum alloy. The forming process is characterized by local heating, and the distribution of temperature is strongly inhomogeneous. Although the wall thickness of the shell is 10 mm to 20 mm, the ratio of outer diameter to thickness is more than 40. These present some difficulties in the flanging process and result in some forming defects. Detailed forming characteristics are hard to obtain by analytical and experimental methods. Thus, the through-process finite element (FE) modeling considering heating, forming, unloading, and cooling is one of the key problems to research the manufacturing process of LDMSC. In this study, the through-process FE modeling of the warm flanging process of LDMSC using aluminum alloy was carried out based on the FORGE. The thermo-mechanical coupled finite element method was adopted in the modeling, and the deformation of the workpiece and the die stress were considered together in the modeling. A full three-dimensional (3D) geometry was modeled due to inhomogeneous distribution in all directions for the temperature field. The simulation data of local flame heating could be transferred seamlessly to the simulations of the deforming process, the unloading process, and the cooling process in the through-process FE model. The model was validated by comparison with geometric shapes and forming defects obtained from the experiment. The developed FE model could describe the inhomogeneous temperature field along circumferential, radial, and axial directions for the formed branch as well as the deformation characteristic and the unloading behavior during the warm flanging process. By using the FE model, the forming defects during the flanging process and their controlling characteristics were explored, the evolution of the temperature field through the whole process was studied, and deformation and springback characteristics were analyzed. The results of this study provide a basis for investigating deformation mechanisms, optimizing processes, and determining parameters in the warm flanging process of a large-diameter aluminum alloy shell component.

2011 ◽  
Vol 110-116 ◽  
pp. 1706-1710
Author(s):  
Selvam Rajiv ◽  
Karibeeran Shanmuga Sundaram ◽  
Pablo Pasquale

Electromagnetic forming (EMF) is a high energy rate forming (HERF) process. It is a high speed forming process using a pulsed magnetic field to form work pieces made of metals such as copper or aluminum alloys with high electrical conductivity. The work piece to be deformed will be located within the effective area of the tool coil so that the resulting type of stress during the forming process is determined by the type of coil used and its arrangement as related to the component. Tubular or structural components can be narrowed by means of compression coils or widened by means of expansion coils, where as sheet metal can be deformed by flat coils. In this work, the experimental investigation and simulation of electromagnetic compression forming of aluminum alloy tubes is studied. The aim of the paper was to verify the results from Finite element methods with experimental data. Experiments were conducted on Tubes of outer diameter 40 mm and wall thickness of 2 mm with a nominal tensile strength of 214 MPa. The tube was compressed using a 4 turn helical actuator discharge that can be energied up to 20 kJ. A field shaper made of aluminum was used. A Maximum reduction of 15.85% in diameters were measured. The same problem was simulated in ANSYS using static coupled electromagnetic analysis. The results of the Simulation showed good correlation with experimental results.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 166
Author(s):  
Jiansheng Xia ◽  
Jun Zhao ◽  
Shasha Dou

There are many typical symmetric large plastic deformation problems in aluminum alloy stamping. Warm stamping technology can improve the formability of materials and obtain parts with high-dimensional accuracy. Friction behavior in the stamping process is significant for the forming quality. An accurate friction coefficient is helpful in improving the prediction accuracy of forming defects. It is hard to obtain a unified and precise friction model through simple experiments due to the complicated contact conditions. To explore the effect of friction behavior on the forming quality, warm friction experiments of the AA6061 aluminum alloy and P20 steel with different process parameters were carried out using a high-temperature friction tester CFT-I (Equipment Type), including temperatures, the interface load, and sliding speeds. The variation curves of the friction coefficient with various parameters were obtained and analyzed. The results show that the friction coefficient increases with temperature and decreases with the sliding speed and load. Then, the influences of process parameters on the surface morphology of the samples after friction were observed by an optical microscope; adhesive wear occurred when the temperature increased, and the surface scratch increased and deepened with the increase in the load. Finally, the friction coefficient models of the speed and load were established by analyzing the data with Original software. Compared with the experimental and the finite element analysis results of the symmetrical part, the errors of the velocity friction model in thickness and springback angle are less than 4% and 5%, respectively. The mistakes of the load friction model are less than 6% and 7%, respectively. The accuracy of the two friction models is higher than that of the constant friction coefficient. Therefore, those coefficient models can effectively improve the simulation accuracy of finite element software.


2011 ◽  
Vol 337 ◽  
pp. 560-563
Author(s):  
Selvam Rajiv ◽  
Karibeeran Shanmuga Sundaram ◽  
Pablo Pasquale

Electromagnetic forming is one of the high- rate forming methods that are extensively used to form and join axisymmetric tubes and metal sheet. It is a high speed forming process using a pulsed magnetic field to form work pieces made of metals such as copper or aluminum alloys with high electrical conductivity. In this work, the experimental investigation and mathematical analysis of electromagnetic compression forming of aluminum alloy tubes AA6063 is studied. The aim of the work was to verify the results from MATLAB code with the experimental data. Experiments were conducted on aluminum alloy AA6063 tubes of outer diameter 40 mm and wall thickness of 2 mm with a nominal tensile strength of 214 MPa. The tube was compressed using 4 turn helical actuator discharge coil that can be energized up to 20 kJ. A study on the post forming characteristics hardness and on metallurgical effects were also carried out. The results of the mathematical analysis using MATLAB 2010 showed good correlation with experimental results.


2011 ◽  
Vol 230-232 ◽  
pp. 352-356
Author(s):  
Wen Ke Liu ◽  
Kang Sheng Zhang ◽  
Zheng Huan Hu

Based on the rigid-plastic deformation finite element method and the heat transfer theories, the forming process of cross wedge rolling was simulated with the finite element software DEFORM-3D. The temperature field of the rolled piece during the forming process was analyzed. The results show that the temperature gradient in the outer of the work-piece is sometimes very large and temperature near the contact deformation zone is the lowest while temperature near the center of the rolled-piece keeps relatively stable and even rises slightly. Research results provide a basis for further study on metal flow and accurate shaping of work-piece during cross wedge rolling.


2018 ◽  
Vol 2018 ◽  
pp. 1-16
Author(s):  
Liang Zhao ◽  
Zhiyong Yang ◽  
Lijie Wang

There is a growing demand for silos with large diameters and volumes; hence, the stresses induced by the temperature differences between the inner and the outer surfaces of the concrete walls of the large silos become significant. Sunshine is the main source of the temperature differences; and it is necessary to investigate the influences of sunshine on large concrete silos and ensure their safety and durability. In this paper, the temperature distribution of a concrete silo exposed to the sunshine was measured on site. A finite element (FE) model was built to analyze the temperature distribution under the sunshine, and the FE model was validated by comparing the yielded temperature field with that obtained on site. Based on the temperature field yielded in the FE model, the internal forces of the silo were determined by performing a structural analysis. After that, the FE model was extended and used for a parametrical study, and the influences induced by the factors like meteorological parameters, dimension of silos, and reference temperature on the temperature effects of the silo were investigated. The simulation results showed that the temperature gradient exhibited significant nonlinearities along the wall thickness. The performance of a steady-state analytical method was evaluated, which is conventionally used for the design of silos. It was found that, for the silos with the thicknesses of more than 30 centimeters, the steady-state method overestimated the temperature effects. It is suggested here that nonlinear temperature gradients should be employed for considering the temperature effects of large silos.


2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Derek A. Jones ◽  
James P. Gaewsky ◽  
Mona Saffarzadeh ◽  
Jacob B. Putnam ◽  
Ashley A. Weaver ◽  
...  

The use of anthropomorphic test devices (ATDs) for calculating injury risk of occupants in spaceflight scenarios is crucial for ensuring the safety of crewmembers. Finite element (FE) modeling of ATDs reduces cost and time in the design process. The objective of this study was to validate a Hybrid III ATD FE model using a multidirection test matrix for future spaceflight configurations. Twenty-five Hybrid III physical tests were simulated using a 50th percentile male Hybrid III FE model. The sled acceleration pulses were approximately half-sine shaped, and can be described as a combination of peak acceleration and time to reach peak (rise time). The range of peak accelerations was 10–20 G, and the rise times were 30–110 ms. Test directions were frontal (−GX), rear (GX), vertical (GZ), and lateral (GY). Simulation responses were compared to physical tests using the correlation and analysis (CORA) method. Correlations were very good to excellent and the order of best average response by direction was −GX (0.916±0.054), GZ (0.841±0.117), GX (0.792±0.145), and finally GY (0.775±0.078). Qualitative and quantitative results demonstrated the model replicated the physical ATD well and can be used for future spaceflight configuration modeling and simulation.


2011 ◽  
Vol 148-149 ◽  
pp. 1319-1322
Author(s):  
Xiao Hu ◽  
Yi Sheng Zhang ◽  
Hong Qing Li ◽  
De Qun Li

Blow forming process of plastic sheets is simple and easy to realize, thus, it is widely used for plastic thin-wall parts. In the practical production, an effective method is needed for the preliminary set-up of process parameters in order to achieve accurate control of thickness distribution. Thus, a finite element method (FEM) code is used to simulate blow forming process. For better description of complex material theological characteristics, a physically based viscoelastic model (VUMAT forms Buckley model) to model the complex constitutive behavior is used. Nonlinear FE analyses using ABAQUS were carried out to simulate the blow forming process of plastic cups. The actual values at different locations show a satisfactory agreement with the simulation results: as a matter of fact the error along the cell mid-section did not exceed 0.02 mm on average, corresponding to 5% of the initial thickness, thus the FE model this paper can meet the requirements of the engineering practice.


2018 ◽  
Vol 920 ◽  
pp. 70-76 ◽  
Author(s):  
Bao Hang Zhu ◽  
Yi Xi Zhao ◽  
Zhong Qi Yu ◽  
Hui Yan

The T-section aluminum alloy window trim strip sheets are used to improve vehicle appearance. As the mobile scenery line, these window trim strips with claws need high forming accuracy to meet good assembly quality requirement. The top portion of the T-section sheet is stamped to form an edge flange structure. Springback control is essential in forming process. In this paper, the influence of the window trim strip geometric parameters on forming springback is studied. Some finite element models of the process were built with the Dynaform software. The simulation results were verified experimentally. The main conclusions include as belows: The different heights of the stiffeners part in T-section change the stiffness of the part. Although the stiffeners part does not participate in the forming, it also has springback in the forming process. So, it is necessary to study the influence of the flanging part width (W) and the stiffeners part height (H) of the T-section on springback. We set W to 15 mm and change the value of H value according to the real product. The value of springback increases with the increase of H value in the beginning. After ratio of H/W increases to 0.6, the value of springback fluctuates with the increase of H value. When ratio of H/W is about 0.5, the springback values are mostly less than ± 0.5 mm in key sections, which is acceptable.


2011 ◽  
Vol 675-677 ◽  
pp. 921-924 ◽  
Author(s):  
Ming Wei Wang ◽  
Chun Yan Wang ◽  
Li Wen Zhang

Vacuum hot bulge forming (VHBF) is becoming an increasingly important manufacturing process for titanium alloy cylindrical workpiece in the aerospace industries. Finite element simulation is an essential tool for the specification of process parameters. In this paper, a two-dimensional nonlinear thermo-mechanical couple FE model was established. Numerical simulation of vacuum hot bulge forming of titanium alloy cylindrical workpiece was carried out using FE analysis software MSC.Marc. The effects of process parameter on vacuum hot bulge forming of BT20 titanium alloy cylindrical workpiece was analyzed by numerical simulation. The proposed an optimized vacuum hot bulge forming process parameters and die size. And the corresponding experiments were carried out. The simulated results agreed well with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document