scholarly journals Revisiting the Dependence of Poisson’s Ratio on Liquid Fragility and Atomic Packing Density in Oxide Glasses

Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2439 ◽  
Author(s):  
Martin B. Østergaard ◽  
Søren R. Hansen ◽  
Kacper Januchta ◽  
Theany To ◽  
Sylwester J. Rzoska ◽  
...  

Poisson’s ratio (ν) defines a material’s propensity to laterally expand upon compression, or laterally shrink upon tension for non-auxetic materials. This fundamental metric has traditionally, in some fields, been assumed to be a material-independent constant, but it is clear that it varies with composition across glasses, ceramics, metals, and polymers. The intrinsically elastic metric has also been suggested to control a range of properties, even beyond the linear-elastic regime. Notably, metallic glasses show a striking brittle-to-ductile (BTD) transition for ν-values above ~0.32. The BTD transition has also been suggested to be valid for oxide glasses, but, unfortunately, direct prediction of Poisson’s ratio from chemical composition remains challenging. With the long-term goal to discover such high-ν oxide glasses, we here revisit whether previously proposed relationships between Poisson’s ratio and liquid fragility (m) and atomic packing density (Cg) hold for oxide glasses, since this would enable m and Cg to be used as surrogates for ν. To do so, we have performed an extensive literature review and synthesized new oxide glasses within the zinc borate and aluminoborate families that are found to exhibit high Poisson’s ratio values up to ~0.34. We are not able to unequivocally confirm the universality of the Novikov-Sokolov correlation between ν and m and that between ν and Cg for oxide glass-formers, nor for the organic, ionic, chalcogenide, halogenide, or metallic glasses. Despite significant scatter, we do, however, observe an overall increase in ν with increasing m and Cg, but it is clear that additional structural details besides m or Cg are needed to predict and understand the composition dependence of Poisson’s ratio. Finally, we also infer from literature data that, in addition to high ν, high Young’s modulus is also needed to obtain glasses with high fracture toughness.

2008 ◽  
Vol 39-40 ◽  
pp. 137-146 ◽  
Author(s):  
Tanguy Rouxel ◽  
Hui Ji ◽  
Vincent Keryvin ◽  
Tahar Hammouda ◽  
Satoshi Yoshida

Although Poisson's ratio (ν) is a macroscopic elastic parameter it depends much on the fine details of the atomic packing. Glasses exhibit a wide range of values for  from 0.1 to 0.4 which correlate to the glass network polymerisation degree, hence reproducing at the atomic scale what is observed in cellular materials at the macroscopic scale[1]. As for pure oxide glasses, we found in various multi-component glasses built on ionic-, covalent- or Van der Waals bonds that an increase of Poisson’s ratio corresponds to a decrease of the atomic network crosslink degree[2]. Noteworthy, an extension of this analysis to the case of metallic glasses correlate the recently proposed cluster-like network structure for these glasses[3,4]. A general feature is that a highly cross-linked atomic network results in a glass with a low atomic packing density (large free volume fraction), as exemplified with the case of amorphous silica. The lower the atomic packing density is and the larger the volume change the glass experiences under high pressure (1 to 25 GPa). Indentation experiments with sharp indenters (such as the Vickers one) give birth to hydrostatic stresses of the same order of magnitude and thus induce glass densification. There is hence a direct correlation between ν (reflecting the packing density) and the indentation behavior[5].


2007 ◽  
Vol 22 (2) ◽  
pp. 344-351 ◽  
Author(s):  
X.J. Gu ◽  
S. Joseph Poon ◽  
Gary J. Shiflet

Iron-based bulk metallic glasses (BMGs) are characterized by high fracture strengths and elastic moduli, with some exhibiting fracture strengths near 4 GPa, 2–3 times those of conventional high-strength steels. Among the Fe-based BMGs, the non-ferromagnetic ones, designated “non-ferromagnetic amorphous steel alloys” by two of the present authors [S.J. Poon et al.: Appl. Phys. Lett.83, 1131 (2003)], have glass-forming ability high enough to form single-phase glassy rods with diameters reaching 16 mm. Fe-based BMGs designed for structural applications must exhibit some plasticity under compression. However, the role of alloy composition on plastic and brittle failures in metallic glasses is largely unknown. In view of a recently observed correlation that exists between plasticity and Poisson’s ratio for BMGs, compositional effects on plasticity and elastic properties in amorphous steels were investigated. For the new amorphous steels, fracture strengths as high as 4.4 GPa and plastic strains reaching ∼0.8% were measured. Plastic failure instead of brittle failure was observed as the Poisson’s ratio approached 0.32 from below. Investigation of the relationship between the elastic moduli of the alloys and those of the alloying elements revealed that interatomic interactions in addition to the elastic moduli of the alloying elements must be considered in designing ductile Fe-based BMGs. The prospects for attaining high fracture toughness in Fe-based BMGs are discussed in this article.


2007 ◽  
Vol 15 (5-6) ◽  
pp. 663-667 ◽  
Author(s):  
G.Y. Wang ◽  
P.K. Liaw ◽  
Y. Yokoyama ◽  
A. Peker ◽  
W.H. Peter ◽  
...  

2018 ◽  
Vol 494 ◽  
pp. 86-93 ◽  
Author(s):  
Kacper Januchta ◽  
Ruofu Sun ◽  
Liping Huang ◽  
Michal Bockowski ◽  
Sylwester J. Rzoska ◽  
...  

2014 ◽  
Vol 31 (6) ◽  
pp. 066102 ◽  
Author(s):  
Ai-Kun Wang ◽  
Shi-Guang Wang ◽  
Rong-Jie Xue ◽  
Guo-Cai Liu ◽  
Kun Zhao

Author(s):  
Amin Abd El-Moneim ◽  
Hassan Y. Alfifi

In this article, we have continued our recent work(30,42) on the prediction of elastic properties in alkali borovanadate glasses. Changes in the elastic moduli and Poisson’s ratio due to the substitution of V2O5 by Na2O in the ternary alkali Na2O–B2O3–V2O5 glasses have been analysed and predicted on the basis of the theories and approaches that existing in the field. Both the packing density and dissociation energy per unit volume of the glass were evaluated in terms of the basic structural units that constitute the glass network. In addition to this, the theoretical values of elastic moduli and Poisson’s ratio were calculated from the Makishima–Mackenzie’s model and compared with the corresponding experimental values. The results revealed that the concentrations of the basic structural units BO3, BO4, VO5 and VO4 play a dominant role in correcting the anomalous behaviour between experimental elastic moduli and calculated dissociation energy per unit volume. An excellent agreement between the theoretical and experimental elastic moduli was achieved for majority of the samples. The correlation between bulk modulus and the ratio between packing density and mean atomic volume has also been achieved on the basis of Abd El-Moneim and Alfifi’s approaches.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2837
Author(s):  
Martin B. Østergaard ◽  
Mikkel S. Bødker ◽  
Morten M. Smedskjaer

In glass materials, Poisson’s ratio (ν) has been proposed to be correlated with a variety of features, including atomic packing density (Cg), liquid fragility (m), and network connectivity. To further investigate these correlations in oxide glasses, here, we study cesium borate and cesium silicate glasses with varying modifier/former ratio given the difference in network former coordination and because cesium results in relatively high ν compared to the smaller alkali modifiers. Within the binary glass series, we find positive correlations between ν on one hand and m and Cg on the other hand. The network former is found to greatly influence the correlation between ν and the number of bridging oxygens (nBO), with a negative correlation for silicate glasses and positive correlation for borate glasses. An analysis based on topological constraint theory shows that this difference cannot be explained by the effect of superstructural units on the network connectivity in lithium borate glasses. Considering a wider range of oxide glasses from the literature, we find that ν generally decreases with increasing network connectivity, but with notable exceptions for heavy alkali borate glasses and calcium alumino tectosilicate glasses.


2007 ◽  
Vol 336-338 ◽  
pp. 2528-2531
Author(s):  
Xiao Bo Lu ◽  
Xie Quan Liu ◽  
Xin Hua Ni ◽  
Shu Qin Zhang

The composite ceramics that contains nano-fibers and transformation particles, fabricated through SHS process, is performed with high fracture toughness and high plasticity. The matrix of composite ceramics was mainly composed of fiber eutectics with nano-fibers. The transformation particles were distributed along boundaries of the fiber eutectic structures. First, Mori-Tanaka method was used to predict the stiffness of the fiber eutectic. The fiber eutectic is transverse isotropy and has five independent elastic constants. Then considering random orientation of the fiber eutectic, the Young’s modulus and Poisson’s ratio of the matrix is determined by even strain. The matrix is isotropy. Finely, assuming the transformation particles as spheres distributed in the matrix, the effective stiffness for composite ceramics was computed. When the volume fraction of fibers and particles increase, the Young’s modulus of composite ceramics decrease and are little smaller than the volume average value, the Poisson’s ratio of composite ceramics decrease and are little bigger than the volume average value.


Sign in / Sign up

Export Citation Format

Share Document