scholarly journals Nanomagnetite-embedded PLGA Spheres for Multipurpose Medical Applications

Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2521 ◽  
Author(s):  
Valentina Grumezescu ◽  
Oana Gherasim ◽  
Irina Negut ◽  
Stefan Banita ◽  
Alina Maria Holban ◽  
...  

We report on the synthesis and evaluation of biopolymeric spheres of poly(lactide-co-glycolide) containing different amounts of magnetite nanoparticles and Ibuprofen (PLGA-Fe3O4-IBUP), but also chitosan (PLGA-CS-Fe3O4-IBUP), to be considered as drug delivery systems. Besides morphological, structural, and compositional characterizations, the PLGA-Fe3O4-IBUP composite microspheres were subjected to drug release studies, performed both under biomimetically-simulated dynamic conditions and under external radiofrequency magnetic fields. The experimental data resulted by performing the drug release studies evidenced that PLGA-Fe3O4-IBUP microspheres with the lowest contents of Fe3O4 nanoparticles are optimal candidates for triggered drug release under external stimulation related to hyperthermia effect. The as-selected microspheres and their chitosan-containing counterparts were biologically assessed on macrophage cultures, being evaluated as biocompatible and bioactive materials that are able to promote cellular adhesion and proliferation. The composite biopolymeric spheres resulted in inhibited microbial growth and biofilm formation, as assessed against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans microbial strains. Significantly improved antimicrobial effects were reported in the case of chitosan-containing biomaterials, regardless of the microorganisms’ type. The nanostructured composite biopolymeric spheres evidenced proper characteristics as prolonged and controlled drug release platforms for multipurpose biomedical applications.

Author(s):  
DHARMENDER PALLERLA ◽  
SUMAN BANOTH ◽  
SUNKARI JYOTHI

Objective: The objective of this study was to formulate and evaluate the Curcumin (CUR) encapsulated sodium alginate (SA)/badam gum (BG)/kaolin (KA) microbeads for controlled drug release studies. Methods: The fabricated microbeads were characterized by fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (X-RD), and scanning electron microscopy (SEM). Dynamic swelling studies and in vitro release kinetics were performed in simulated intestinal fluid (pH 7.4) and simulated gastric fluid (pH 1.2) at 37 °C. Results: FTIR confirms the formation of microbeads. DSC studies confirm the polymorphism of CUR in drug loaded microbeads which indicate the molecular level dispersion of the drug in the microbeads. SEM studies confirmed the microbeads are spherical in shape with wrinkled and rough surfaces. XRD studies reveal the molecular dispersion of CUR and the presence of KA in the developed microbeads. In vitro release studies and swelling studies depend on the pH of test media, which might be suitable for intestinal drug delivery. The % of drug release values fit into the Korsmeyer-Peppas equation and n values are obtained in the range of 0.577-0.664, which indicates that the developed microbeads follow the non-Fickian diffusion drug release mechanism. Conclusion: The results concluded that the CUR encapsulated microbeads are potentially good carriers for controlled drug release studies.


2018 ◽  
Vol 6 (21) ◽  
pp. 3531-3540 ◽  
Author(s):  
Jun Xiang ◽  
Xia Tong ◽  
Feng Shi ◽  
Qiang Yan ◽  
Bing Yu ◽  
...  

The preparation of a new near-infrared (NIR) light-responsive nanocarrier for controlled drug release is demonstrated.


2018 ◽  
Vol 42 (14) ◽  
pp. 11964-11971 ◽  
Author(s):  
U. T. Uthappa ◽  
G. Sriram ◽  
Varsha Brahmkhatri ◽  
Madhuprasad Kigga ◽  
Ho-Young Jung ◽  
...  

An alternative facile approach for the surface modification of naturally available diatoms with xerogel for controlled drug release applications.


Author(s):  
Vega Widya Karisma ◽  
Wei Wu ◽  
Mingxing Lei ◽  
Huawen Liu ◽  
Muhammad Farrukh Nisar ◽  
...  

Light has attracted special attention as a stimulus for triggered drug delivery systems (DDS) due to its intrinsic features of being spatially and temporally tunable. Ultraviolet A (UVA) radiation has recently been used as a source of external light stimuli to control the release of drugs using a “switch on- switch off” procedure. This review discusses the promising potential of UVA radiation as the light source of choice for photo-controlled drug release from a range of photo-responsive and photolabile nanostructures via photo-isomerization, photo-cleavage, photo-crosslinking, and photo-induced rearrangement. In addition to its clinical use, we will also provide here an overview of the recent UVA-responsive drug release approaches that are developed for phototherapy and skin photoprotection.


2010 ◽  
Vol 8 (56) ◽  
pp. 451-456 ◽  
Author(s):  
Ming-Wei Chang ◽  
Eleanor Stride ◽  
Mohan Edirisinghe

Drug-delivery systems with a unique capability to respond to a given stimulus can improve therapeutic efficacy. However, development of such systems is currently heavily reliant on responsive polymeric materials and pursuing this singular strategy limits the potential for clinical translation. In this report, with a model system used for drug-release studies, we demonstrate a new strategy: how a temperature-responsive non-toxic, volatile liquid can be encapsulated and stored under ambient conditions and subsequently programmed for controlled drug release without relying on a smart polymer. When the stimulus temperature is reached, controlled encapsulation of different amounts of dye in the capsules is achieved and facilitates subsequent sustained release. With different ratios of the liquid (perfluorohexane): dye in the capsules, enhanced controlled release with real-time response is provided. Hence, our findings offer great potential for drug-delivery applications and provide new generic insights into the development of stimuli drug-release systems.


Author(s):  
Pavankumar Krosuri ◽  
Ravikumar K. ◽  
Priyanka S.N. ◽  
G.Anjana Devi ◽  
Lakshmiprasanna S. ◽  
...  

Diloxanide Furoate is a Dichloroacetamide derivative utilized for the treatment of various protozoal infections like amoebiasis. Colon targeted tablets were designed using pH sensitive polymers like Eudragit S100, Eudragit L 100,Cellulose acetate phthallate at different concentrations. All the matrix,compression coated formulations showed the desired physicochemical properties as per the official limits. The drug release studies were performed according to the USP paddle method by using 0.1N HCL for 2 hours, pH 7.4 phosphate buffer for 3 hours and pH 6.8 phosphate buffer upto 18 hours. A better controlled drug release was shown for Eudragit L 100. Based on the comparative drug release studies among different Formulations F9 with Eudragit L 100 polymer showed better control drug release. The release kinetics for the Optimised Formulation F9 was calculated and “r2” value was more for Zero order kinetics i.e.,0.970 indicating that the formulation doesnot depend upon its concentration and from the Korsmeyer peppas model the diffusion exponent value “n” is > 1 indicating that it follows super case II transport mechanism. The accelerated stability studies conducted for optimised formulation F9 for 3 months have no significant variation.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Ranran Zhang ◽  
Risheng Yao ◽  
Binbin Ding ◽  
Yuxin Shen ◽  
Shengwen Shui ◽  
...  

Low tissue penetration and harmful effects of (ultraviolet) UV or visible light on normal tissue limit exploiting nanocarriers for the application of light-controlled drug release. Two strategies may solve the problem: one is to improve the sensitivity of the nanocarriers to light to decrease the radiation time; the other one is using more friendly light as the trigger. In this work, we fabricated a core-shell hybrid nanoparticle with an upconverting nanoparticle (UCNP) as the core and thermo- and light-responsive block copolymers as the shell to combine the two strategies together. The results indicated that the sensitivity of the block copolymer to light could be enhanced by decreasing the photolabile moieties in the polymer, and the UCNP could transfer near-infrared (NIR) light, which is more friendly to tissue and cell, to UV light to trigger the phase conversion of the block polymersin situ. Using Nile Red (NR) as the model drug, the hybrid nanoparticles were further proved to be able to act as carriers with the character of NIR triggered drug release.


RSC Advances ◽  
2015 ◽  
Vol 5 (7) ◽  
pp. 5269-5276 ◽  
Author(s):  
Qingjian Xing ◽  
Najun Li ◽  
Yang Jiao ◽  
Dongyun Chen ◽  
Jiaying Xu ◽  
...  

The core–shell nanocarrier, based on spiropyran-containing copolymer coated upconversion nanocomposites, was successfully prepared via a facile self-assembly process for NIR-triggered drug release and cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document