scholarly journals Modification of Ordinary Concrete Using Fly Ash from Combustion of Municipal Sewage Sludge

Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 487 ◽  
Author(s):  
Gabriela Rutkowska ◽  
Piotr Wichowski ◽  
Małgorzata Franus ◽  
Michał Mendryk ◽  
Joanna Fronczyk

This article focuses on the impact of fly ash from the combustion of municipal sewage sludge (FAMSS) as a cement additive in the amounts of 5%, 10%, 15%, 20% and 25% (by mass) on selected concrete properties. In the course of the experimental work, water penetration depth and compressive strength measurements were made at various periods of curing (from 2 to 365 days). In addition, the potential impact of FAMSS on the natural environment was examined by determining the leachability of heavy metals. FAMSS-modified concretes showed small values of water penetration depth (lower than 50 mm), as well as good compressive strength (reaching minimum class C30/37 after 130 days of maturing)—similar to the compressive strength obtained for conventional concrete. In addition, the partial replacement of cement with FAMSS has environmental benefits, expressed as a reduction in CO2 emissions. In addition, study has shown that compliance with environmental requirements is associated with heavy metal leaching.

2021 ◽  
Vol 13 (8) ◽  
pp. 4182
Author(s):  
Gabriela Rutkowska ◽  
Marek Chalecki ◽  
Mariusz Żółtowski

Striving for reduction of production costs and constraints on natural resources cause the use of waste materials as substitutes of traditional raw materials to become increasingly important. Dynamic development of sewerage systems and sewage treatment plants observed over the recent years leads to increase of mass of the produced sewage sludge. According to the Waste Law, the municipal sewage sludge can be used if it is properly stabilized, e.g., through thermal processing. This process results in significant quantities of fly ash which must be properly utilized. The paper presents results of investigations of influence of partial replacement of cement by the fly ash from sewage sludge on concrete parameters. It was designed as a C20/25 class concrete mix, based on the Portland cement CEM I 42.5R with various ash content. Physical and chemical properties of the ash as well as frost resistance and the compressive strength of the concrete after 28, 56 and 365 days of curing were investigated. The obtained results of investigations confirm the possibility of application of fly ash wastes as a cement substitute in the concrete manufacturing. If a predefined quantity of cement is replaced by the fly ash, then one can obtain cement composite with good strength parameters.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3106
Author(s):  
Tomasz Kalak ◽  
Kinga Marciszewicz ◽  
Joanna Piepiórka-Stepuk

Recently, more and more attention has been paid to the removal of nickel ions due to their negative effects on the environment and human health. In this research, fly ash obtained as a result of incineration of municipal sewage sludge with the use of circulating fluidized bed combustion (CFBC) technology was used to analyze the possibility of removing Ni(II) ions in adsorption processes. The properties of the material were determined using analytical methods, such as SEM-EDS, XRD, BET, BJH, thermogravimetry, zeta potential, SEM, and FT-IR. Several factors were analyzed, such as adsorbent dose, initial pH, initial concentration, and contact time. As a result of the conducted research, the maximum sorption efficiency was obtained at the level of 99.9%. The kinetics analysis and isotherms showed that the pseudo-second order equation model and the Freundlich isotherm model best suited this process. In conclusion, sewage sludge fly ash may be a suitable material for the effective removal of nickel from wastewater and the improvement of water quality. This research is in line with current trends in the concepts of circular economy and sustainable development.


2011 ◽  
Vol 383-390 ◽  
pp. 3799-3804
Author(s):  
Xiao Xu Fan ◽  
Lei Zhe Chu ◽  
Li Guo Yang

The fuel characteristics of municipal sewage sludge are suitable for dual fluidized bed(DFB) gasification, which can get middle calorific value gas through volatile pyrolysis, and reduce volume through char combustion. The hot test results of municipal sewage sludge on DFB rig were showen that the temperature distribution along combustor heigh is uniform, and the carbon content of fly ash is about 2~3%. In the experiment, with the increase of gasifier temperatrue, the more volatile of the sewage sludge was pyrolyzed. When the temperature of the gasifier reached 800°C, the calorific value of gas was 6.9MJ/Nm3; the emissions of SO2, NOx and HCl were appropriate to the standard. The leaching toxicity of heavy metal of the fly ash was lower than the discharge standard.


2016 ◽  
Vol 63 (1) ◽  
pp. 47-61 ◽  
Author(s):  
Paweł Falacinski ◽  
Łukasz Szarek

Abstract In Poland, in recent years, there has been a rapid accumulation of sewage sludge - a by-product in the treatment of urban wastewater. This has come about as a result of infrastructure renewal, specifically, the construction of modern sewage treatment plants. The more stringent regulations and strategic goals adopted for modern sewage management have necessitated the application of modern engineering methodology for the disposal of sewage sludge. One approach is incineration. As a consequence, the amount of fly ash resulting from the thermal treatment of municipal sewage sludge has grown significantly. Hence, intensive work is in progress for environmentally safe management of this type of waste. The aim of the experiment was to evaluate the possibility of using the fly ash that results from municipal sewage sludge thermal treatment (SSTT) as an additive to hardening slurries. This type of hardening slurry with various types of additives, e.g. coal combustion products, is used in the construction of cut-off walls in hydraulic structures. The article presents the technological and functional parameters of hardening slurries with an addition of fly ash obtained by SSTT. Moreover, the usefulness of these slurries is analysed on the basis of their basic properties, i.e. density, contractual viscosity, water separation, structural strength, volumetric density, hydraulic conductivity, compressive and tensile strength. The mandated requirements for slurries employed in the construction of cut-off walls in flood embankments are listed as a usefulness criteria. The article presents the potential uses of fly ash from SSTT in hardening slurry technology. It also suggests directions for further research to fully identify other potential uses of this by-product in this field.


2012 ◽  
Vol 209-211 ◽  
pp. 1245-1252
Author(s):  
Zheng Zhong Zeng ◽  
Xiao Li Wang ◽  
Yu Pan ◽  
Zhong Ren Nan

The land use has become the international mainstream and the favorable direction to dispose the municipal sewage sludge in recent years. The heavy metals, however, are the major barrier that limit the land utilization. Batch aerobic composting experiments were conducted to investigate the effect of composting and co-composting with fly ash on the shape of the heavy metals (Ni & Cd) in sludge by using the sawdust to regulate the C/N ratio. Results have shown that co-composting with fly ash can significantly change Ni & Cd species distribution, leading unstable state content of Ni lower than composting only. However, the result is not as good as composting only in terms of Cd. At the same time the fly ash dosage equaling 14% of the dry sludge mass was the optimized quantity to guarantee the lowest exchangeable fraction amount of the two heavy metals.


Author(s):  
Dr.Sarvesh, Et. al.

Concrete is usually a combination of cement, coarse particles (aggregates and Sand) and water. It is used to design and improve the infrastructures.It is used to design and improve the infrastructures. Concrete has many advantages and disadvantage. The main property that is characteristic to a concrete’s workability is its compressive strength. Only through this single test, one can judge if cementing has been done appropriately. Possible advancements for development include the use of non-traditional and creative materials, and the reuse of waste materials with a specific end goal to replenish the absence of specific assets and to discover alternative ways to monitor the Earth..This investigation concentrate on Compressive strength, flexural and split tensile strength of Conventional Concrete (CC) and Class C fly ash remains with bio-cement and natural pozzolans to consider the impact of bio-concrete with blend extents of 0%,0.25%,0.5%,1% and 1.5% on quality properties. Moreover, effective self-healing usually occurred due to the use of polymers, microorganism and additional cementing material. It is the key issue to find out the self-healing efficiency’s effect to sealing the crack width successfully. And good resistance was observed during the bacterial chemical process against the freeze and thaw attacks.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5259
Author(s):  
Gabriela Rutkowska ◽  
Paweł Ogrodnik ◽  
Joanna Fronczyk ◽  
Ayla Bilgin

Concrete is the most commonly used structural material, without which modern construction could not function. It is a material with a high potential to adapt to specific operating conditions. The use of this potential is made by its material modification. The aim of the performed investigations was the assessment of rational application possibilities of fly ashes from thermally conversed municipal sewage sludge as an alternative concrete admixture. A concrete mix was designed, based on the Portland cement CEM I 42.5R and containing various quantity of ash, amounting to 0–25% of cement mass. The samples were conditioned and heated in a furnace at the temperature of 300 °C, 500 °C, and 700 °C. Physical and chemical properties of the ashes as well as utility properties of the concrete, i.e., density, compressive strength after 28, 56, and 90 days of maturation, frost resistance, and compressive strength in high temperature were determined. The tests were performed at cubic samples with 10 cm edge. The replacement of a determined cement quantity by the fly ashes enables obtaining a concrete composite having good strength parameters. The concrete modified by the fly ashes constituting 20% of the cement mass achieved its average compressive strength after 28 days of maturation equal to 50.12 MPa, after 56 days 50.61 MPa and after 90 days 50.80 MPa. The temperature growth weakens the composite structure. The obtained results confirm the possibility of waste recycling in the form of fly ashes as a cement substitute in concrete manufacturing.


2012 ◽  
Vol 178-181 ◽  
pp. 880-884
Author(s):  
Kai Feng Wang ◽  
Na Peng ◽  
De Liang Liu

The pH, electric conductivity (EC), nutrients, heavy metals, water-holding capacity and water permeability of stabilized sewage sludge were investigated by mixing municipal sewage sludge with alkaline fly ash and slag. The results indicate that the evaporation of soil moisture increases and water-holding capacity decreases in these artificial soils with an increase of slag, and the infiltration rate of artificial soils increases to improve its water permeability by adding slag to sewage sludge. The pHs of stabilized artificial soils range from 7.5 to 8.0 for a weak alkaline soil, which tend to be neutral by adding slag to sewage sludge. The ECs of stabilized artificial soils range from 2.93 to 3.71 mS•cm-1, indicating the higher salt content in these artificial soils. The nutrient contents of stabilized sewage sludge are up to a high fertilizer level and available nutrients increase with the increase of the ratio of slag to sewage sludge in these artificial soils. Cd, Ni, Pb, Cu and Zn for all artificial soil treatments are lower than control standards for pollutants in sludge and fly ash for Agricultural use.


2012 ◽  
Vol 217-218 ◽  
pp. 58-66 ◽  
Author(s):  
Jia-Qing Xu ◽  
Rui-Lian Yu ◽  
Xiao-Yi Dong ◽  
Gong-Ren Hu ◽  
Xue-Song Shang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document