scholarly journals Investigation on Microsheet Metal Deformation Behaviors in Ultrasonic-Vibration-Assisted Uniaxial Tension with Aluminum Alloy 5052

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 637 ◽  
Author(s):  
Chunju Wang ◽  
Weiwei Zhang ◽  
Lidong Cheng ◽  
Changqiong Zhu ◽  
Xinwei Wang ◽  
...  

Ultrasonic vibration (UV) is widely used in the forming, joining, machining process, etc. for the acoustic softening effect. For parts with small dimensions, UV with limited output energy is very suitable for the microforming process and has been gaininf more and more attention. In this investigation, UV-assisted uniaxial tensile experiments were carried out utilizing GB 5052 thin sheets of different thicknesses and grain sizes, respectively. The coupling effects of UV and the specimen dimension on the properties of the material were analyzed from the viewpoint of acoustic energy in activating dislocations. A reduction of flow stress was found for the existing acoustic softening effects of UV. Additionally, the residual effects of UV were demonstrated when UV was turned off. The uniform deformation ability of thin sheet could be improved by increasing the hardening exponent with UV. The experimental results indicate that UV is very helpful in improving the forming limit in microsheet forming, e.g., microbulging and deep drawing processes.

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1010
Author(s):  
Przemysław Snopiński ◽  
Tibor Donič ◽  
Tomasz Tański ◽  
Krzysztof Matus ◽  
Branislav Hadzima ◽  
...  

To date, numerous investigations have shown the beneficial effect of ultrasonic vibration-assisted forming technology due to its influence on the forming load, flow stress, friction condition reduction and the increase of the metal forming limit. Although the immediate occurring force and mean stress reduction are known phenomena, the underlying effects of ultrasonic-based material softening remain an object of current research. Therefore, in this article, we investigate the effect of upsetting with and without the ultrasonic vibrations (USV) on the evolution of the microstructure, stress relaxation and hardness of the AlMg3 aluminum alloy. To understand the process physics, after the UAC (ultrasonic assisted compression), the microstructures of the samples were analyzed by light and electron microscopy, including the orientation imaging via electron backscatter diffraction. According to the test result, it is found that ultrasonic vibration can reduce flow stress during the ultrasonic-assisted compression (UAC) process for the investigated aluminum–magnesium alloy due to the acoustic softening effect. By comparing the microstructures of samples compressed with and without simultaneous application of ultrasonic vibrations, the enhanced shear banding and grain rotation were found to be responsible for grain refinement enhancement. The coupled action of the ultrasonic vibrations and plastic deformation decreased the grains of AlMg3 alloy from ~270 μm to ~1.52 μm, which has resulted in a hardness enhancement of UAC processed sample to about 117 HV.


Author(s):  
Gurpreet Singh ◽  
DR Prajapati ◽  
PS Satsangi

The micro-electrical discharge machining process is hindered by low material removal rate and low surface quality, which bound its capability. The assistance of ultrasonic vibration and magnetic pulling force in micro-electrical discharge machining helps to overcome this limitation and increase the stability of the machining process. In the present research, an attempt has been made on Taguchi based GRA optimization for µEDM assisted with ultrasonic vibration and magnetic pulling force while µEDM of SKD-5 die steel with the tubular copper electrode. The process parameters such as ultrasonic vibration, magnetic pulling force, tool rotation, energy and feed rate have been chosen as process variables. Material removal rate and taper of the feature have been selected as response measures. From the experimental study, it has been found that response output measures have been significantly improved by 18% as compared to non assisted µEDM. The best optimal combination of input parameters for improved performance measures were recorded as machining with ultrasonic vibration (U1), 0.25 kgf of magnetic pulling force (M1), 600 rpm of tool rotation (R2), 3.38 mJ of energy (E3) and 1.5 mm/min of Tool feed rate (F3). The confirmation trail was also carried out for the validation of the results attained by Grey Relational Analysis and confirmed that there is a substantial improvement with both assistance applied simultaneously.


2007 ◽  
Vol 539-543 ◽  
pp. 2651-2656 ◽  
Author(s):  
C.J. Huang ◽  
E. Ghassemieh

A 3-D coupled temperature-displacement finite element analysis is performed to study an ultrasonic consolidation process. Results show that ultrasonic wave is effective in causing deformation in aluminum foils. Ultrasonic vibration leads to an oscillating stress field. The oscillation of stress in substrate lags behind the ultrasonic vibration by about 0.1 cycle of ultrasonic wave. The upper foil, which is in contact with the substrate, has the most severe deformation. The substrate undergoes little deformation. Apparent material softening by ultrasonic wave, which is of great concern for decades, is successfully simulated. The higher the friction coefficient, the more obvious the apparent material softening effect.


2018 ◽  
Vol 19 (2) ◽  
pp. 202 ◽  
Author(s):  
Rasoul Safdarian

Forming limit diagram (FLD) is one of the formability criteria which is a plot of major strain versus minor strain. In the present study, Gurson-Tvergaard-Needleman (GTN) model is used for FLD prediction of aluminum alloy 6061. Whereas correct selection of GTN parameters’ is effective in the accuracy of this model, anti-inference method and numerical simulation of the uniaxial tensile test is used for identification of GTN parameters. Proper parameters of GTN model is imported to the finite element analysis of Nakazima test for FLD prediction. Whereas FLD is dependent on forming history and strain path, forming limit stress diagram (FLSD) based on the GTN damage model is also used for forming limit prediction in the numerical method. Numerical results for FLD, FLSD and punch’s load-displacement are compared with experimental results. Results show that there is a good agreement between the numerical and experimental results. The main drawback of numerical results for prediction of the right-hand side of FLD which was concluded in other researchers’ studies was solved in the present study by using GTN damage model.


Magnesium alloys have a tremendous possibility for biomedical applications due to their good biocompatibility, integrity and degradability, but their low ignition temperature and easy corrosive property restrict the machining process for potential biomedical applications. In this research, ultrasonic vibration-assisted ball milling (UVABM) for AZ31B is investigated to improve the cutting performance and get specific surface morphology in dry conditions. Cutting force and cutting temperatures are measured during UVABM. Surface roughness is measured with a white light interferometer after UVABM. The experimental results show cutting force and cutting temperature reduce due to ultrasonic vibration, and surface roughness decreases by 34.92%, compared with that got from traditional milling, which indicates UVABM is suitable to process AZ31B for potential biomedical applications.


2012 ◽  
Vol 497 ◽  
pp. 1-5
Author(s):  
Xiao Dan Xie ◽  
Yong Li ◽  
Cam Vinh Duong ◽  
Ahmed Al-Zahrani

Traditionally, single point diamond turning (SPDT) can not process ferreous metals because of acute tool wear. Ultrasonic vibration-assisted cutting(UVC) provides a promising solution for the problem. In this paper, for the aim of directly obtaining mirror surface on die steels, UVC method was used combining with SPDT process. Experiments were carried out on an ultra precision turning machine, cutting parameters and vibration parameters were well-chosen, and two kind of feed rates, two kinds of prevailing die steels were experimented. Mirror surfaces were successfully achieved on face turning, with the best roughness of Ra16.6nm. And the surface roughness, surface texture and tool wear in machining process were discussed.


2020 ◽  
Vol 142 (3) ◽  
Author(s):  
Jian Zhao ◽  
Zhanqiang Liu ◽  
Bing Wang ◽  
Yukui Cai ◽  
Qinghua Song

Abstract Ultrasonic burnishing is usually applied to make machined surface modification. The acoustic softening effect caused by ultrasonic vibration is beneficial to the machining of difficult-to-cut materials. In the present work, a burnishing force prediction model was proposed for rotary ultrasonic burnishing of titanium alloy Ti–6Al–4V, whose surface had been machined with the face milling process. Firstly, the contact between the burnishing roller and one single milling mark was analyzed with plane strain assumption based on the Boussinesq–Flamant contact problem. Then, the effect of ultrasonic softening on the yield stress of Ti–6Al–4V was investigated. The critical contact width and contact load that the burnishing roller crushed on one single milling mark were examined to confirm the feasibility of the proposed ultrasonic burnishing force prediction model. The experimental verifications were carried out at various ultrasonic powers. The burnishing forces from experiment measurements were consistent with the calculated results from the proposed model. The mean deviations between theoretical and experimental results of the ultrasonic burnishing force were 10.4%, 12.2%, and 15.2%, corresponding to the ultrasonic power at the level of 41 W, 158 W, and 354 W, respectively.


Sign in / Sign up

Export Citation Format

Share Document