scholarly journals Using Fatigue Characteristics to Analyse Test Results for 16Mo3 Steel under Tension-Compression and Oscillatory Bending Conditions

Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1197 ◽  
Author(s):  
Andrzej Kurek

In this study, 16Mo3 steel was analysed for fatigue tests under tension-compression and oscillatory bending conditions. The analysis involved a comparison of fatigue test results obtained using the Manson-Coffin-Basquin, Langer and Kandil models and the models proposed by Kurek-Łagoda. It was observed that it is possible to substitute the basic tension-compression test performed in large testing machines with oscillatory bending tests carried out on a simple, modern test stand. The tests were performed under oscillatory bending on a prototype machine. The testing of 16Mo3 steel proved that the best-known Mason-Coffin-Basquin fatigue characteristic describes the results of all of the experimental tests very well, but the model can only be used when it is possible to divide strains into elastic and plastic components. It should be emphasised here that there is no such possibility in the case of tests performed under oscillatory bending conditions. It was proven that the proposed test method can substitute the tension-compression test very well and be a much more cost efficient way to obtain LCF material fatigue properties.

2007 ◽  
Vol 539-543 ◽  
pp. 4944-4949 ◽  
Author(s):  
Tae Kwon Ha ◽  
Hwan Jin Sung

Thermal fatigue is a complex phenomenon encountered in materials exposed to cyclically varying temperatures in the presence or absence of external load. Continually increasing working temperature and growing need for greater efficiency and reliability of automotive exhaust require immediate investigation into the thermal fatigue properties especially of high temperature stainless steels. In this study, thermal fatigue properties of 304 and 429EM stainless steels have been evaluated in the temperature ranges of 200-800oC and 200-900oC. Systematic methods for control of temperatures within the predetermined range and measurement of load applied to specimens as a function of temperature during thermal cycles have been established. Thermal fatigue tests were conducted under fully constrained condition, where both ends of specimens were completely fixed. Thermal fatigue property of STS 304 was superior to that of STS 429EM. Load relaxation behavior at the temperatures of thermal cycle was closely related with the thermal fatigue property.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1915
Author(s):  
Jungsub Lee ◽  
Sang-Youn Park ◽  
Byoung-Ho Choi

In this study, the fatigue characteristics of aluminum alloys and mechanical components were investigated. To evaluate the effect of forging, fatigue specimens with the same chemical compositions were prepared from billets and forged mechanical components. To evaluate the cleanliness of the aluminum alloys, the cross-sectional area of specimens was observed, and the maximum inclusion sizes were obtained using extreme value statistics. Rotary bending fatigue tests were performed, and the fracture surfaces of the specimens were analyzed. The results show that the forging process not only elevated the fatigue strength but also reduced the scatter of the fatigue life of aluminum alloys. The fatigue characteristics of C-specimens were obtained to develop finite-element method (FEM) models. With the intrinsic fatigue properties and strain–life approach, the FEM analysis results agreed well with the test results.


2014 ◽  
Vol 891-892 ◽  
pp. 273-277
Author(s):  
Josef Volák ◽  
Zbynek Bunda

This paper describes the fatigue properties of the steel P92. This material is widely used in the energy industry, especially for pipes and pipe bends of supercritical steam turbines. Steel P92 is alloyed with 2 % of tungsten compared to steel P91. This increases a creep strenght of the material. It is possible to reduce wall thickness of the P92 pipe up to about 20%. Fatigue tests were carried out on standard samples and compared with SFT samples (Small Fatigue Test). Using the device SSam 2 made by company Rolce Royce, it is possible to gently remove a samples from energy component without power plant shutdowns. Consider these correlations, i tis possible to determine mechanical properties of the material from small amount of removed experimental material.


2014 ◽  
Vol 224 ◽  
pp. 3-8 ◽  
Author(s):  
Sebastian Kamiński ◽  
Marcel Szymaniec ◽  
Tadeusz Łagoda

In this work an investigation of internal structure influence on mechanical and fatigue properties of ferritic-pearlitic steels is shown. Ferrite grain size and phase volume fraction of three grades of structural steel with similar chemical composition, but different mechanical properties, were examined. Afterwards, samples of the materials were subjected to cyclic bending tests. The results and conclusions are presented in this paper


2014 ◽  
Vol 598 ◽  
pp. 13-19
Author(s):  
Ewelina Böhm ◽  
Tadeusz Łagoda

The paper presents an analysis of aluminium and its alloys in terms of fatigue strength. The paper contains information in terms of cyclic fatigue tests of aluminium alloys. On the basis of available literature data, Basquin fatigue characteristics have been designated. On their basis a comparison between chosen fatigue characteristics of aluminium alloys with different chemical composition and element percentage in the substance have been done.


2021 ◽  
Vol 15 (2) ◽  
pp. 184-194
Author(s):  
Renato Souza ◽  
Roberto Duarte ◽  
Manuel Alves ◽  
Juliana Daguano ◽  
Santos dos ◽  
...  

Fatigue is one of the most important properties to be considered in ceramic dental implants due to cyclic mechanical stresses arising from the chewing process. In this work, the fatigue behaviour of hydrothermally degraded ZrO2-based ceramics stabilized with 3mol% Y2O3 (3Y-TZP) was studied in 4-point bending tests. Samples of 3Y-TZP were compacted (100MPa), sintered at 1475 ?C for 2 h, polished and hydrothermally degraded in an autoclave as described in the ISO-13356 standard. The samples were characterized by their relative density, crystalline phase composition, microstructure and surface roughness. The highly dense (>99.6%TD) sintered 3Y-TZP ceramics has only tetragonal t-ZrO2 phase, even after hydrothermal ageing. Furthermore, the ceramic materials presented a Vickers hardness of 12.7?0.2GPa, a fracture toughness of 7.1?0.3MPa?m1/2 and a 4-point bending strength of 940.1?67MPa. Based on the bending test results 5 different stress levels for the fatigue tests were selected and conducted by cyclic 4-point bending obtaining the S-N curve. Weibull statistics was used for the statistical analysis. The fatigue tests indicate that the limit of fatigue resistance of this 3Y-TZP ceramics is around 550MPa, i.e. higher than the limits established in the ISO-13356 standard for the use of Y-TZP ceramics for the manufacture of implants. The fatigue behaviour of the investigated 3Y-TZP ceramics was related to the toughening mechanisms acting in Y-TZP ceramics, such as transformation toughening related to t?m phase transformation and microcracking.


2011 ◽  
Vol 465 ◽  
pp. 531-534 ◽  
Author(s):  
Stefano Beretta ◽  
Mauro Filippini ◽  
Luca Patriarca ◽  
Giuseppe Pasquero ◽  
Silvia Sabbadini

The fatigue properties of a Ti-48Al-2Cr-2Nb alloy obtained by electron beam melting (EBM) with a patented process has been examined by conducting high cycle fatigue tests performed at different loading ratios both at room temperature and at high temperatures, comparable to those experienced by the components during service. Some tests have been conducted in the superlong life regime well exceeding 10 million cycles, highlighting individual fatigue characteristics of the studied TiAl alloy.


2014 ◽  
Vol 887-888 ◽  
pp. 873-877
Author(s):  
Bin Li ◽  
Nan Ma ◽  
Xin Ling Liu ◽  
Zhi Wang Qiu ◽  
Hong Ren Li

This paper studied the fatigue behavior of the near alpha titanium alloy TA11 under multiaxial loading conditions with tension - bending vibration, to simulate the service stress state applied on the engine blades, where a large centrifugal force is superimposed with bending vibration loads. A plate-like specimen was used in the fatigue tests with different ratios between the tension and bending vibration loads, then, the energy based fatigue criteria were applied for correlation of the test results. The fatigue properties of titanium alloy TA11 under the specialized loading conditions are characterized and discussed.


1981 ◽  
Vol 103 (1) ◽  
pp. 113-118 ◽  
Author(s):  
Y. J. Park ◽  
D. H. Stone

In order to evaluate the material properties of Class U wheel steel under cyclic loading, low-cycle fatigue tests were conducted at room temperature on specimens taken from the rim of the wheel. The test results show that Class U wheel steel experiences significant cyclic softening at lower strains, but cyclically hardens at larger strain levels. Due to the cyclic softening at lower strain levels, the steel will plastically deform, even at stresses of about one-half of the monotonic yield strength. Quantitative fatigue properties, which can then be used to predict accurate fatigue lives of various components of wheels under complex service environments, are also obtained from the low-cycle fatigue tests.


Materials ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 173 ◽  
Author(s):  
Andrzej Kurek ◽  
Justyna Koziarska ◽  
Tadeusz Łagoda

In this study, we created a new model to determine strain fatigue characteristics obtained from a bending test. The developed model consists of comparing the stress and strain gradient surface ratio for bending and tensile elements. For model verification, seven different materials were examined based on fatigue tests we conducted, or data available in the literature: 30CrNiMo8, 10HNAP, SM45C, 16Mo3 steel, MO58 brass, and 2017A-T4 and 6082-T6 aluminum alloys. As a result, we confirmed that the proposed method can be used to determine strain fatigue characteristics that agree with the values determined on the basis of a tensile compression test.


Sign in / Sign up

Export Citation Format

Share Document