scholarly journals Poly(2-oxazoline) Matrices with Temperature-Dependent Solubility—Interactions with Water and Use for Cell Culture

Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2702
Author(s):  
Natalia Oleszko-Torbus ◽  
Marcelina Bochenek ◽  
Alicja Utrata-Wesołek ◽  
Agnieszka Kowalczuk ◽  
Andrzej Marcinkowski ◽  
...  

In this work, we studied the stability of matrices with temperature-dependent solubility and their interactions with water at physiological temperature for their application in cell culture in vitro. Gradient copolymers of 2-isopropyl- with 2-n-propyl-2-oxazoline (P(iPrOx-nPrOx)) were used to prepare the matrices. The comonomer ratio during polymerization was chosen such that the cloud point temperature (TCP) of the copolymer was below 37 °C while the glass transition (Tg) was above 37 °C. The role of the support for matrices in the context of their stability in aqueous solution was examined. Therefore, matrices in the form of both self-supported bulk polymer materials (fibrillar mats and molds) and polymer films supported on the silica slides were examined. All of the matrices remained undissolved when incubated in water at a temperature above TCP. For the self-supported mats and molds, we observed the loss of shape stability, but, in the case of films supported on silica slides, only slight changes in morphology were observed. For a more in-depth investigation of the origin of the shape deformation of self-supported matrices, we analyzed the wettability, thickness, and water uptake of films on silica support because the matrices remained undeformed under these conditions. It was found that, above the TCP of P(iPrOx-nPrOx), the wettability of the films decreased, but at the same time the films absorbed water and swelled. We examined how this specific behavior of the supported films influenced the culture of fibroblasts. The temperature-dependent solubility of the matrices and the possibility of noninvasive cell separation were also examined.

2019 ◽  
Vol 28 (5) ◽  
pp. 974-981 ◽  
Author(s):  
Armin Badre ◽  
David T. Axford ◽  
Sara Banayan ◽  
James A. Johnson ◽  
Graham J.W. King

Genetics ◽  
1988 ◽  
Vol 118 (4) ◽  
pp. 609-617
Author(s):  
M Winey ◽  
M R Culbertson

Abstract Two unlinked mutations that alter the enzyme activity of tRNA-splicing endonuclease have been identified in yeast. The sen1-1 mutation, which maps on chromosome 12, causes temperature-sensitive growth, reduced in vitro endonuclease activity, and in vivo accumulation of unspliced pre-tRNAs. The sen2-1 mutation does not confer a detectable growth defect, but causes a temperature-dependent reduction of in vitro endonuclease activity. Pre-tRNAs do not accumulate in sen2-1 strains. The in vitro enzyme activities of sen1-1 and sen2-1 complement in extracts from a heterozygous diploid, but fail to complement in mixed extracts from separate sen1-1 and sen2-1 haploid strains. These results suggest a direct role for SEN gene products in the enzymatic removal of introns from tRNA that is distinct from the role of other products known to affect tRNA splicing.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Fengjie Jiang ◽  
Xiaozhu Tang ◽  
Chao Tang ◽  
Zhen Hua ◽  
Mengying Ke ◽  
...  

AbstractN6-methyladenosine (m6A) modification is the most prevalent modification in eukaryotic RNAs while accumulating studies suggest that m6A aberrant expression plays an important role in cancer. HNRNPA2B1 is a m6A reader which binds to nascent RNA and thus affects a perplexing array of RNA metabolism exquisitely. Despite unveiled facets that HNRNPA2B1 is deregulated in several tumors and facilitates tumor growth, a clear role of HNRNPA2B1 in multiple myeloma (MM) remains elusive. Herein, we analyzed the function and the regulatory mechanism of HNRNPA2B1 in MM. We found that HNRNPA2B1 was elevated in MM patients and negatively correlated with favorable prognosis. The depletion of HNRNPA2B1 in MM cells inhibited cell proliferation and induced apoptosis. On the contrary, the overexpression of HNRNPA2B1 promoted cell proliferation in vitro and in vivo. Mechanistic studies revealed that HNRNPA2B1 recognized the m6A sites of ILF3 and enhanced the stability of ILF3 mRNA transcripts, while AKT3 downregulation by siRNA abrogated the cellular proliferation induced by HNRNPA2B1 overexpression. Additionally, the expression of HNRNPA2B1, ILF3 and AKT3 was positively associated with each other in MM tissues tested by immunohistochemistry. In summary, our study highlights that HNRNPA2B1 potentially acts as a therapeutic target of MM through regulating AKT3 expression mediated by ILF3-dependent pattern.


Micromachines ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 246 ◽  
Author(s):  
Max Männel ◽  
Carolin Fischer ◽  
Julian Thiele

Three-dimensional (3D) printing of microfluidic devices continuously replaces conventional fabrication methods. A versatile tool for achieving microscopic feature sizes and short process times is micro-stereolithography (µSL). However, common resins for µSL lack biocompatibility and are cytotoxic. This work focuses on developing new photo-curable resins as a basis for µSL fabrication of polymer materials and surfaces for cell culture. Different acrylate- and methacrylate-based compositions are screened for material characteristics including wettability, surface roughness, and swelling behavior. For further understanding, the impact of photo-absorber and photo-initiator on the cytotoxicity of 3D-printed substrates is studied. Cell culture experiments with human umbilical vein endothelial cells (HUVECs) in standard polystyrene vessels are compared to 3D-printed parts made from our library of homemade resins. Among these, after optimizing material composition and post-processing, we identify selected mixtures of poly(ethylene glycol) diacrylate (PEGDA) and poly(ethylene glycol) methyl ethyl methacrylate (PEGMEMA) as most suitable to allow for fabricating cell culture platforms that retain both the viability and proliferation of HUVECs. Next, our PEGDA/PEGMEMA resins will be further optimized regarding minimal feature size and cell adhesion to fabricate microscopic (microfluidic) cell culture platforms, e.g., for studying vascularization of HUVECs in vitro.


2021 ◽  
Vol 30 ◽  
pp. 096368972110465
Author(s):  
Xing He ◽  
Sang Li ◽  
Juan Zhang ◽  
Lu Cao ◽  
Cejun Yang ◽  
...  

The role of Regulatory T cells (Tregs) in tolerance induction post-transplantation is well-established, but Tregs adoptive transfer alone without combined immunosuppressants have failed so far in achieving clinical outcomes. Here we applied a set of well-designed criteria to test the influence of commonly used immunosuppressants (belatacept, tacrolimus, and mycophenolate) on cord blood-derived Tregs (CB-Tregs). Our study shows that while none of these immunosuppressants modulated the stability and expression of homing molecules by CB-Tregs, belatacept met all other selective criteria, shown by its ability to enhance CB-Tregs-mediated in vitro suppression of the allogeneic response without affecting their viability, proliferation, mitochondrial metabolism and expression of functional markers. In contrast, treatment with tacrolimus or mycophenolate led to reduced expression of functional molecule GITR in CB-Tregs, impaired their viability, proliferation and mitochondrial metabolism. These findings indicate that belatacept could be considered as a candidate in Tregs-based clinical immunomodulation regimens to induce transplant tolerance.


2021 ◽  
Author(s):  
Patrick Emery ◽  
Radhika Joshi ◽  
Yao Cai ◽  
Yomgliang Xia ◽  
Joanna Chiu

Temperature compensation is a critical feature of circadian rhythms, but how it is achieved remains elusive. Here, we uncovered the important role played by the Drosophila PERIOD (PER) phosphodegron in temperature compensation. Using CRISPR-Cas9, we introduced a series of mutations that altered three Serines (S44, 45 and 47) belonging to the PER phosphodegron, the functional homolog of mammalian PER2’s S487 phosphodegron, which impacts temperature compensation. While all three Serine to Alanine substitutions lengthened period at all temperatures tested, temperature compensation was differentially affected. S44A and S45A substitutions caused decreased temperature compensation, while S47A resulted in overcompensation. These results thus reveal unexpected functional heterogeneity of phosphodegron residues in thermal compensation. Furthermore, mutations impairing phosphorylation of the per^s phosphocluster decreased thermal compensation, consistent with its inhibitory role on S47 phosphorylation. Interestingly,the S47A substitution caused increased accumulation of hyper-phosphorylated PER at warmer temperatures. This finding was corroborated by cell culture assays in which S47A caused excessive temperature compensation of phosphorylation-dependent PER degradation. Thus, we show a novel role of the PER phosphodegron in temperature compensation through temperature-dependent modulation of the abundance of hyper-phosphorylated PER. Our work also reveals interesting mechanistic convergences and differences between mammalian and Drosophila temperature compensation of the circadian clock.


1964 ◽  
Vol 120 (1) ◽  
pp. 57-82 ◽  
Author(s):  
John M. Moses ◽  
Robert H. Ebert ◽  
Richard C. Graham ◽  
Katherine L. Brine

Material obtained from the in vitro incubation of granulocytes from saline-induced peritoneal exudates of rabbits has been shown to produce inflammation and fever in rabbits. The supernatant material from cells incubated in saline has been termed granulocytic substance (GS) and is heat-labile. Its production is temperature dependent, occurring at 37°C but not at 4°C, requires viable cells, and is inhibited by potassium ions. A similar material is liberated when cells are incubated in a more physiologic medium. Freezing and thawing of granulocytes does not release GS and the active principle cannot be obtained from the incubation of lymphocytes. GS produces a delayed inflammatory response as measured by leucocyte sticking and emigration in the rabbit ear chamber and the leakage of protein-conjugated dye at the site of intradermal injection. The former response can be accurately quantitated by calculation of the inflammatory index from reactions observed in the ear chamber. The inflammatory reaction and the properties of GS distinguish it from a variety of previously described mediators of inflammation, but GS appears to be identical with leucocytic pyrogen. The possible role of GS in delayed and protracted inflammation and its relationship to the pathogenesis of fever are discussed.


1996 ◽  
Vol 270 (1) ◽  
pp. R105-R110 ◽  
Author(s):  
K. Sasaki ◽  
M. Natsuhori ◽  
M. Shimoda ◽  
Y. Saima ◽  
E. Kokue

Stability and protein-binding properties of tetrahydrofolate (THF) in pig plasma were studied in vitro. THF in plasma was stable for more than 120 min when it existed in a bound form, whereas THF both in plasma ultrafiltrate and in plasma ultrafiltrate plus porcine albumin was degraded rapidly and disappeared soon after its addition. These results suggest that high-affinity folate-binding protein (HFBP) is related to the stability of THF. THF-protein binding kinetic analysis showed that porcine plasma had HFBP and low-affinity binding protein (albumin) for THF. Dissociation constant and maximal binding capacity of HFBP were calculated to be 0.4 and 70 nM, respectively, indicating that > 98% of endogenous plasma THF existed in bound form with HFBP. Porcine albumin was not essentially a protein that binds and protects endogenous THF from degradation. We conclude that most endogenous THF binds to HFBP and only the unbound form of THF is rapidly degraded in pig plasma. HFBP protects THF from degradation and allows THF to exist stably in pig plasma. In addition, HFBP may govern the species specificity of plasma folate distribution in pigs.


Sign in / Sign up

Export Citation Format

Share Document