scholarly journals Mechanical Properties of SLM-Printed Aluminium Alloys: A Review

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4301 ◽  
Author(s):  
Panneer Ponnusamy ◽  
Rizwan Abdul Rahman Rashid ◽  
Syed Hasan Masood ◽  
Dong Ruan ◽  
Suresh Palanisamy

Selective laser melting (SLM) is a powder bed fusion type metal additive manufacturing process which is being applied to manufacture highly customised and value-added parts in biomedical, defence, aerospace, and automotive industries. Aluminium alloy is one of the widely used metals in manufacturing parts in SLM in these sectors due to its light weight, high strength, and corrosion resistance properties. Parts used in such applications can be subjected to severe dynamic loadings and high temperature conditions in service. It is important to understand the mechanical response of such products produced by SLM under different loading and operating conditions. This paper presents a comprehensive review of the latest research carried out in understanding the mechanical properties of aluminium alloys processed by SLM under static, dynamic, different build orientations, and heat treatment conditions with the aim of identifying research gaps and future research directions.

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 647 ◽  
Author(s):  
Bingrong Zhang ◽  
Lingkun Zhang ◽  
Zhiming Wang ◽  
Anjiang Gao

In order to obtain high-strength and high-ductility Al–Si–Cu–Mg alloys, the present research is focused on optimizing the composition of soluble phases, the structure and morphology of insoluble phases, and artificial ageing processes. The results show that the best matches, 0.4 wt% Mg and 1.2 wt% Cu in the Al–9Si alloy, avoided the toxic effect of the blocky Al2Cu on the mechanical properties of the alloy. The addition of 0.6 wt% Zn modified the morphology of eutectic Si from coarse particles to fine fibrous particles and the texture of Fe-rich phases from acicular β-Fe to blocky π-Fe in the Al–9Si–1.2Cu–0.4Mg-based alloy. With the optimization of the heat treatment parameters, the spherical eutectic Si and the fully fused β-Fe dramatically improved the ultimate tensile strength and elongation to fracture. Compared with the Al–9Si–1.2Cu–0.4Mg-based alloy, the 0.6 wt% Zn modified alloy not only increased the ultimate tensile strength and elongation to fracture of peak ageing but also reduced the time of peak ageing. The following improved combination of higher tensile strength and higher elongation was achieved for 0.6 wt% Zn modified alloy by double-stage ageing: 100 °C × 3 h + 180 °C × 7 h, with mechanical properties of ultimate tensile strength (UTS) of ~371 MPa, yield strength (YS) of ~291 MPa, and elongation to fracture (E%) of ~5.6%.


2021 ◽  
Vol 410 ◽  
pp. 197-202
Author(s):  
Pavel P. Poleckov ◽  
Olga A. Nikitenko ◽  
Alla S. Kuznetsova

This study considers the influence of various heat treatment conditions on the change of steel microstructure parameters, mechanical properties and cold resistance at a temperature of-60 °C. The common behavior of these properties is considered depending on the heating temperature used for quenching and subsequent tempering. Based on the obtained results, heat treatment conditions are proposed that provide a combination of a guaranteed yield point σ0.2 ≥600 N/mm2 with a low-temperature impact toughness KCV-60 ≥50 J/cm2 and plasticity δ5 ≥17%. The obtained research results are intended for industrial use at the mill "5000" site of MMK PJSC.


Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1113
Author(s):  
Hanyu Cong ◽  
Haibo Yuan ◽  
Zekun Tao ◽  
Hanlin Bao ◽  
Zheming Zhang ◽  
...  

Converting biomass into high value-added compounds has attracted great attention for solving fossil fuel consumption and global warming. 5-Hydroxymethylfurfural (HMF) has been considered as a versatile biomass-derived building block that can be used to synthesize a variety of sustainable fuels and chemicals. Among these derivatives, 2,5-furandicarboxylic acid (FDCA) is a desirable alternative to petroleum-derived terephthalic acid for the synthesis of biodegradable polyesters. Herein, to fully understand the current development of the catalytic conversion of biomass to FDCA, a comprehensive review of the catalytic conversion of cellulose biomass to HMF and the oxidation of HMF to FDCA is presented. Moreover, future research directions and general trends of using biomass for FDCA production are also proposed.


2012 ◽  
Vol 245 ◽  
pp. 203-208
Author(s):  
Ali Sarim ◽  
Bo Ming Zhang ◽  
Chang Chun Wang

Carbon nanofibers have been utilized increasingly for enhancing the mechanical properties of advanced polymer composites, which include high strength, stiffness, toughness, and through-thickness Properties. The incorporation of nano particles with a high aspect ratio and extremely large surface area into polymers improves their mechanical properties significantly. Although a number of efforts have been made to improve various properties by mixing nano particles directly into resin, however, it could lead to high viscosities which create problems during processing. In this particular study, an attempt has been made to enhance mechanical response of nano composites by using, state of the art, a different technique i.e spraying the Carbon Nano Fibers (CNF) on dry perform before infusion. The nano composite samples were prepared using a spraying methodology i.e dispersing the 1.0 weight percent CNF solution on carbon fabric, and evaporating the solvent such that only nano fibers remain on perform, followed by Vacuum assisted resin transfer molding (VARTM). Tensile, compression, flexural and short beam strength tests were performed to evaluate the effectiveness of CNF addition on the mechanical properties of carbon / epoxy composites. Results indicated, CNF addition offered simultaneous increase in all these mechanical properties in different percentages i.e 22–28 percent improvement in tensile strength, 7-11 percent in compressive strength, 14–19 percent in Flexural strength and 45-55 percent short beam strength with respect to the neat composite. The rise in their modulus has also been discussed in detail and part of this study. For in-depth analysis, Microscopic approaches were also carried out to investigate the fracture behavior and mechanism of material. Scanning electron microscopy of fractured surfaces revealed improved primary fiber–matrix adhesion and indications of CNF-induced matrix toughening.


2019 ◽  
Vol 90 (5-6) ◽  
pp. 710-727 ◽  
Author(s):  
Yiwei Ouyang ◽  
Xianyan Wu

In order to review the most effective ways to improve the mechanical properties of composite T-beams and further increase their application potential, research progress on the mechanical properties of textile structural composite T-beams was summarized based on two-dimensional (2-D) ply structure composite T-beams, delamination resistance enhanced 2-D ply structure T-beams, and three-dimensional (3-D) textile structural composite T-beams; future research directions for composite T-beams were also considered. From existing literature, the research status and application bottlenecks of 2-D ply structure composite T-beams and T-beams with enhanced delamination resistance performance were described, as were the specific classification, research progress, and mechanical properties of 3-D textile structural composite T-beams. In addition, the superior mechanical properties of 3-D braided textile structural composite T-beams, specifically their application potential based on excellent delamination resistance capacity, were highlighted. Future research directions for composite T-beams, that is, the applications of high-performance raw materials, locally enhanced design, structural blending enhancement, functionality, and intelligence are presented in this review.


Sign in / Sign up

Export Citation Format

Share Document