Highly efficient biphasic calcium-phosphate coating procedure with an enhanced coating yield and protein incorporation rate

2021 ◽  
Vol 11 (8) ◽  
pp. 1428-1437
Author(s):  
Ping Sun ◽  
Shuyi Li ◽  
Jianhua Niu ◽  
Min Yi ◽  
Weixing Xu ◽  
...  

A biphasic calcium-phosphate (CaP)-coating is a promising surface modification for functionalizing various endosseous biomaterials. However, its biomedical application is limited by its low coating yield and incorporation inefficiency. We developed a highly concentrated (4.5×) supersaturated calcium-phosphate solution (SCPS) and compared its physicochemical properties with those of 1× SCPS. One milliliter of 4.5× SCPS formed a thick (110 μm) continuous coating on a titanium disc (4×4×1 mm), compared to the thin (29 μm) 1× SCPScoating. On X-ray diffraction analysis, the 4.5× SCPS-coating had characteristic dicalcium-phosphate dehydrate and apatite peaks, in contrast to the apatite-only of 1× SCPS-coating. Under acidic condition (pH 4.5), the 4. × 5SCPS-coating released significantly less Ca2+ than the 1× SCPS-coating. FITC-bovine serum albumin incorporation in the 4.5× SCPS-coating (81.20±6.42%) was significantly higher than in the 1× SCPS-coating (21.86±1.90%). Thus, this modified coating procedure holds promise for biomedical applications.

2008 ◽  
Vol 396-398 ◽  
pp. 615-618
Author(s):  
Rodrigo Brandão ◽  
Fernando Pupio ◽  
Nelson Heriberto A. Camargo ◽  
E. Gemelli

The bioceramics nanostructured have made important characteristics in biomedical applications, especially the calcium phosphate ceramics. The aim of this work is synthesis and characterization of calcium phosphate and nanocomposites powders, the method of dissolution of CaO in liquid medium, precipitation and formation of bone calcium phosphate matrix, and nanocomposites by adding the solution of phosphoric acid (H3PO4). The nanocomposites powders were synthesized using as strengthening silica gel nanometer (20nm) at concentrations of 1%, 2%, 3% and 5% by volume and subjected to heat treatment to 900°C for 2 hours, seeking obtained HA (Hydroxyapatite). Later the bone matrix of calcium phosphate and nanocomposites powders were subjected from process attrition milling for 2 hours, by way of comparison. The studies characterizations were conducted through the technique of X-ray diffraction, scanning electron microscopy (SEM) and dilatometric test.


Author(s):  
Alessandra Giuliani ◽  
Maria Laura Gatto ◽  
Luigi Gobbi ◽  
Francesco Guido Mangano ◽  
Carlo Mangano

Purpose: Several studies showed that the sintering temperature of 1250 °C could affect the formation of α-Ca3(PO4)2, which is responsible for the reduction of the hardness value of biphasic calcium phosphate biocomposites, but they did not evaluate the inference of the sintering time at peak temperature on transition of β-Ca3(PO4)2 to α-Ca3(PO4)2. This analysis explored, in an innovative way, inferences and correlations between volumetric microstructure, mechanical properties, sintering temperature, and time at peak temperature in order to find the best sintering conditions for biphasic calcium phosphate composites grafted in severe alveolar bone defects. Methods: Sintered biphasic calcium phosphates (30%-hydroxyapatite/70%-tricalcium phosphate) were tested by microCT imaging for the 3D morphometric analysis, by compressive loading to find their mechanical parameters, and by X-ray diffraction to quantify the phases via Rietveld refinement for different sintering temperatures and times at the peak temperature. Data were analysed in terms of statistical inference using Pearson’s correlation coefficients. Results: All the studied scaffolds closely mimicked the alveolar organization of the jawbone, independently on the sintering temperatures and times; however, mechanical testing revealed that the group with peak temperature, which lasted for 2 hours at 1250 °C, showed the highest strength both at the ultimate point and at fracture point. Conclusion: The good mechanical performances of the group with peak temperature, which lasted for 2 hours at 1250 °C, is most likely due to the absence of the α-Ca3(PO4)2 phase, as revealed by X-ray diffraction. However, we detected its presence after sintering at the same peak temperature for longer times, showing the time-dependence, combined with the temperature-dependence, of the β-Ca3(PO4)2 to α-Ca3(PO4)2 transition.


2014 ◽  
Vol 852 ◽  
pp. 251-255
Author(s):  
Ya Jing Yan ◽  
Yong Huang ◽  
Qiong Qiong Ding ◽  
Xiao Feng Pang

The present paper reports a novel solution to develop a calcium phosphates (CaPs) coating with an anodic nanotubular TiO2layer on titanium screw by electrochemical disposition (ECD). The elemental composition of coatings was examined by energy dispersive spectroscopy (EDS), the surface mopholoy was characterized with scanning electron microscopy (SEM), and the functional groups and crystalline phase were analyzed using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Furthermore, the bioactivity was tested by immersion in simulated body fluid (SBF) for 7 days. The results showed that a nanotubular TiO2layer was established which has about 100 mm diameter and the calcium phosphate coatings have higher bioactivity and porosity compared with uncoated titanium screws, which make the coating more conductive to cell adhesion. Using alkaline treatment, the calcium phosphate coating could transform into hydroxyapatite (HAp), making the coating closer to the biological complement. This provides a valuable tool for biomedical applications.


2012 ◽  
Vol 531-532 ◽  
pp. 614-617 ◽  
Author(s):  
Gunawan ◽  
I. Sopyan ◽  
A. Naqshbandi ◽  
S. Ramesh

Biphasic calcium phosphate powders doped with zinc (Zn-doped BCP) were synthesized via sol-gel technique. Different concentrations of Zn have been successfully incorporated into biphasic calcium (BCP) phases namely: 1%, 2%, 3%, 5%, 7%, 10% and 15%. The synthesized powders were calcined at temperatures of 700-900°C. The calcined Zn-doped BCP powders were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential and thermogravimetric analysis (TG/DTA) and field-emission scanning electron microscopy (FESEM). X-ray diffraction analysis revealed that the phases present in Zn-doped are hydroxyapatite, β- TCP and parascholzite. Moreover, FTIR analysis of the synthesized powders depicted that the bands of HPO4 increased meanwhile O-H decreased with an increase in the calcination temperature. Field emission scanning electron microscopy (FESEM) results showed the agglomeration of particles into microscale aggregates with size of the agglomerates tending to increase with an increase in the dopant concentration.


Author(s):  
Wafaa A. Hussain ◽  
Entessar H.A. Al-Mosawe ◽  
Mukhlis M. Ismail ◽  
Luay H. Alwan

Excellent osteoconductivity and resorbability achieved when porous bioceramics have highsurface area that providing fast bone ingrowth. Porous samples were fabricated by using biphasic calcium phosphate BCP (achieved from HA heat treated at 850 oC) with 10 and 20 wt% of ovalbumin binder powder and mixture of carrot fibers and ovalbumin powders (1:1) then dried at 60oC and fired at 1300 oC. Structural, physical and mechanical properties of the prepared porous bioceramic were determined involved X-ray diffraction, Fourier transform infrared spectroscopy FTIR, apparent porosity, water absorption, apparent solid density and compressive strength. The results of X-ray and FTIR showed that the heat treatment of HA was succeeded in forming biphasic calcium phosphate. The apparent porosity values increased with increasing of the binder and carrot fibers content and the growths density of bacteria on bioceramics are less than natural bone. The effect of pathogenic bacteria (Pseudomonas & Staphylococcus) that cause pollution on porous calcium phosphate and natural bone (Albino mice) has been studied.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2213 ◽  
Author(s):  
Rachel Valentim ◽  
Sabina Andrade ◽  
Maria dos Santos ◽  
Aline Santos ◽  
Victor Pereira ◽  
...  

The use of lignocellulosic remnants of the açaí agro-business will benefit the environment with a precursor material for biomedical applications. Nanocellulose (NC) allows the biomimetic growth of biphasic ceramics on its surface, with characteristics compatible with bone tissue, including bioactive properties and biocompatibility. In this study, the composites were obtained from açaí tegument (Euterpe Oleracea Mart.) NC using acid hydrolysis. The characterization performed by scanning electron microscopy showed the characteristic crystals of hydroxyapatite (HA) and calcium triphosphate (β-TCP) based on the results of X-ray diffraction, with the peak at 22°, showing the NC nucleation of HA and peak at 17° showing tricalcium phosphate (β-TCP). Fourier transform infrared spectroscopy confirmed the presence of O-H at 3400 cm−1 and C-H at 2900 cm−1, which is characteristic of cellulose; peaks were also observed at 1609 cm−1, verifying the reduction in lignin content. Groups PO4−3 at approximately 1070 cm−1, P-OH at 910–1040 cm−1, and HCO3− at 2450 cm−1 confirmed the formation of HA and β-TCP. The zeta potential had a range of −11 ± 23.8 mV related to particle size, which had a range of 164.2 × 10−9–4748 × 10−9 m.


Author(s):  
Quan He Bao ◽  
Xiang Xiang Li ◽  
Chen Zhang ◽  
Chao Sun

A dicalcium phosphate dihydrate (CaHPO4·2H2O, DCPD) coating is prepared to reduce the biodegradation rate of Mg–Ca–Zn alloy. The substrate is immersed into a solution with Ca(NO3)2·4 H2O 0.1 mol/L and Na3PO4 0.1 mol/L to obtain calcium phosphate coating. Surface morphology is observed by scanning electron microscopy (SEM). Chemical composition is determined by X-ray diffraction (XRD) and EDX. The biodegradable behavior is investigated by immersion tests. The results show that calcium phosphate coating consists of many flake particles and with immersion time increasing, the coating thickness increased and became more uniform and smooth. The coating can reduce the biodegradation rate of Mg alloys in Hank’s.


2012 ◽  
Vol 506 ◽  
pp. 198-201
Author(s):  
P. Saiwanich ◽  
Kamonpan Pengpat ◽  
G. Rujijanagul ◽  
U. Intatha ◽  
Sukum Eitssayeam

In this work, thepreparation and morphology of biphasic calcium phosphate (BCP) have been studied. The biphasic calcium phosphate (BCP) ceramics were prepared by mixing between hydroxyapatite (HA) and Beta-tricalcium phosphate (β-TCP) powderby ball milling technique with different ratios (100:0,80:20,60:40,50:50,40:60, 20:80 and 0:100). After that the mixtures were forming by Gel casting method and then sintered at 1200°C, respectively. The phase formation of the biphasic calcium phosphateceramics were studied by X-ray diffraction (XRD) and their ceramic microstructure,shrinkage and density were investigated.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 53
Author(s):  
Adrian Szewczyk ◽  
Adrianna Skwira ◽  
Marta Ginter ◽  
Donata Tajer ◽  
Magdalena Prokopowicz

Herein, the microwave-assisted wet precipitation method was used to obtain materials consisting of mesoporous silica (SBA-15) and calcium orthophosphates (CaP). Composites were prepared through immersion of mesoporous silica in different calcification coating solutions and then exposed to microwave radiation. The composites were characterized in terms of molecular structure, crystallinity, morphology, chemical composition, and mineralization potential by Fourier-transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), and scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM-EDX). The application of microwave irradiation resulted in the formation of different types of calcium orthophosphates such as calcium deficient hydroxyapatite (CDHA), octacalcium phosphate (OCP), and amorphous calcium phosphate (ACP) on the SBA-15 surface, depending on the type of coating solution. The composites for which the progressive formation of hydroxyapatite during incubation in simulated body fluid was observed were further used in the production of final pharmaceutical forms: membranes, granules, and pellets. All of the obtained pharmaceutical forms preserved mineralization properties.


2009 ◽  
Vol 1193 ◽  
Author(s):  
B. L. Metcalfe ◽  
S. K. Fong ◽  
L. A. Gerrard ◽  
I. W. Donald ◽  
E. S. Welch ◽  
...  

AbstractThe choice of surrogate for plutonium oxide for use during the initial stages of research into the immobilization of intermediate level pyrochemical wastes containing plutonium andamericium oxides in a calcium phosphate host has been investigated by powder X-ray diffraction and X-ray absorption spectroscopy. Two non-radioactive surrogates, hafnium oxide and cerium oxide, together with radioactive thorium oxide were compared. Similarities in behaviour were observed for all three surrogates when calcined at the lowest temperature, 750°C but differences became more pronounced as the calcination temperature was increased to 950°C. Although some reaction occurred between all the surrogates and the host to form a substituted whitlockite phase, increasing the temperature led to a significant increase in the cerium reaction and the formation of an additional phase, monazite. Additionally it was observed that the cerium became increasingly trivalent at higher temperatures.


Sign in / Sign up

Export Citation Format

Share Document