scholarly journals Numerical Modeling and Analysis of Ti6Al4V Alloy Chip for Biomedical Applications

Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5236
Author(s):  
Waqas Saleem ◽  
Bashir Salah ◽  
Xavier Velay ◽  
Rafiq Ahmad ◽  
Razaullah Khan ◽  
...  

The influence of cutting forces during the machining of titanium alloys has attained prime attention in selecting the optimal cutting conditions to improve the surface integrity of medical implants and biomedical devices. So far, it has not been easy to explain the chip morphology of Ti6Al4V and the thermo-mechanical interactions involved during the cutting process. This paper investigates the chip configuration of the Ti6Al4V alloy under dry milling conditions at a macro and micro scale by employing the Johnson-Cook material damage model. 2D modeling, numerical milling simulations, and post-processing were conducted using the Abaqus/Explicit commercial software. The uncut chip geometry was modeled with variable thicknesses to accomplish the macro to micro-scale cutting by adapting a trochoidal path. Numerical results, predicted for the cutting reaction forces and shearing zone temperatures, were found in close approximation to experimental ones with minor deviations. Further analyses evaluated the influence of cutting speeds and contact friction coefficients over the chip flow stress, equivalent plastic strain, and chip morphology. The methodology developed can be implemented in resolving the industrial problems in the biomedical sector for predicting the chip morphology of the Ti6Al4V alloy, fracture mechanisms of hard-to-cut materials, and the effects of different cutting parameters on workpiece integrity.

Materials ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1260 ◽  
Author(s):  
Yezika Sánchez Hernández ◽  
Francisco Trujillo Vilches ◽  
Carolina Bermudo Gamboa ◽  
Lorenzo Sevilla Hurtado

The Ti6Al4V alloy is included in the group of difficult-to-cut materials. Segmented chips are generated for a wide range of cutting parameters. This kind of chip geometry leads to the periodic variation of machining forces, tool vibrations, and work part-tolerance inaccuracies. Therefore, the analysis of chip morphology and geometry becomes a fundamental machinability criterion. However, few studies propose experimental parametric relationships that allow predicting chip-geometry evolution as a function of cutting parameters. In this work, an experimental analysis of the influence of cutting speed and feed rate on various chip-geometric parameters in dry machining of the Ti6Al4V alloy was carried out. In addition, the chip morphology and chip microstructure were studied. A clear dependence of certain chip-geometric parameters on the cutting parameters studied was found. From the experimental data, several parametric relationships were developed. These relationships were able to predict the evolution of different geometric parameters as a function of cutting speed and feed, within the tested range of values. The differences between the proposed models and the experimental data were also highlighted. These parametric equations allowed quantifying the value of parameters in which the trend was clear.


2011 ◽  
Vol 141 ◽  
pp. 293-297 ◽  
Author(s):  
Yang Tan ◽  
Yi Lin Chi ◽  
Ya Yu Huang ◽  
Ting Qiang Yao

The finite element modeling and simulation of extremely high speed machining of Ti6Al4V alloy are presented in the paper. The Johnson-Cook’s constitutive model is used to describe the material behavior. The Johnson-Cook damage initiation criterion is used to predict the onset of damage due to void nucleation in ductile fracture. A damage evaluation law based on plastic strain energy and a fracture criterion combining the effect of different fracture mechanisms are proposed to model the progressive damage and fracture, respectively. Simulation results show that the predicted chip morphology agrees well with the experimental one. The distribution of temperature and specific cutting force are discussed later.


Author(s):  
Jaimeen Patel ◽  
Harish P. Cherukuri

It is well known that the chip morphology predictions in machining simulations depend on the separation criteria used for modeling chip formation. In this paper, we propose to use two different criteria for chip separation and serration along with the Johnson-Cook damage model. The threshold value for chip separation is determined from machining experiments using the methodologies discussed in Patel et al. [1]. In addition, two separate damage evolution laws for chip separation and serration are used. Our results indicate that the choice of the evolution law and the threshold values of Gc used for chip separation and serration have a significant effect on chip shape and other field variables such as the equivalent plastic strain, cutting force, temperature, etc.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2998 ◽  
Author(s):  
Kubilay Aslantas ◽  
Mohd Danish ◽  
Ahmet Hasçelik ◽  
Mozammel Mia ◽  
Munish Gupta ◽  
...  

Micro-turning is a micro-mechanical cutting method used to produce small diameter cylindrical parts. Since the diameter of the part is usually small, it may be a little difficult to improve the surface quality by a second operation, such as grinding. Therefore, it is important to obtain the good surface finish in micro turning process using the ideal cutting parameters. Here, the multi-objective optimization of micro-turning process parameters such as cutting speed, feed rate and depth of cut were performed by response surface method (RSM). Two important machining indices, such as surface roughness and material removal rate, were simultaneously optimized in the micro-turning of a Ti6Al4V alloy. Further, the scanning electron microscope (SEM) analysis was done on the cutting tools. The overall results depict that the feed rate is the prominent factor that significantly affects the responses in micro-turning operation. Moreover, the SEM results confirmed that abrasion and crater wear mechanism were observed during the micro-turning of a Ti6Al4V alloy.


2019 ◽  
Vol 11 (8) ◽  
pp. 168781401987089 ◽  
Author(s):  
Yingshuai Xu ◽  
Zhihui Wan ◽  
Ping Zou ◽  
Qinjian Zhang

There are many problems and physical phenomena in turning process, like machined surface quality, cutting force, tool wear, and so on. These factors and the chip shape of workpiece materials, which is an important aspect to study the mechanism of ultrasonic vibration–assisted turning, go hand in hand. This article first introduces the types and changes of chip, meanwhile the chip formation mechanism of ultrasonic vibration–assisted turning is studied and analyzed, and the turning experiments of 304 austenitic stainless steel with and without ultrasonic vibration are carried out. The difference of chip morphology between ultrasonic vibration–assisted turning and conventional turning is contrasted and analyzed from the macroscopic and microscopic point of view. The influence of process parameters on chip shape and the impact of chip shape on machining effect are also analyzed. Results indicate that when process parameters (vibration frequency, ultrasonic amplitude, and cutting parameters) are suitably selected, ultrasonic vibration–assisted turning can gain access to better chip shape and chip breaking effect than conventional turning. By contrast with conventional turning, phenomenon of serrated burr on the chip edge and the surface defects of chip in ultrasonic vibration–assisted turning have improved significantly. Moreover, it is found that superior chip morphology in ultrasonic vibration–assisted turning can be acquired under the circumstance of comparatively small cutting parameters (cutting speed, depth of cut, and feed rate); at the same time, preferable chips can also obtain ranking machining effect.


Procedia CIRP ◽  
2018 ◽  
Vol 77 ◽  
pp. 351-354 ◽  
Author(s):  
Iheb Chérif ◽  
Théo Dorlin ◽  
Bertrand Marcon ◽  
Guillaume Fromentin ◽  
Habib Karaouni

Procedia CIRP ◽  
2019 ◽  
Vol 80 ◽  
pp. 56-61 ◽  
Author(s):  
Lexiang Wang ◽  
Yan He ◽  
Yufeng Li ◽  
Yulin Wang ◽  
Chao Liu ◽  
...  

2011 ◽  
Vol 188 ◽  
pp. 429-434 ◽  
Author(s):  
L.P. Yang ◽  
Li Xin Huang ◽  
Cheng Yong Wang ◽  
L.J. Zheng ◽  
Ping Ma ◽  
...  

Supported holes of Printed circuit board (PCB) are drilled with two different drill bits. Drilling force (thrust force and torque) and chip morphology are examined at different cutting parameters, and the effects of the two drills are discussed. The results indicate that the drilling force and chip morphology are affected by the feed rate, spindle speed and drill shape. Thrust force increases with the increasing feed rate, and decreases with the increasing spindle speed. Optimization of drill geometry can reduce the thrust force significantly, and is effective in chip breaking which can improve the chip evacuation during the drilling process.


Sign in / Sign up

Export Citation Format

Share Document