scholarly journals Bio-Based Packaging Materials Containing Substances Derived from Coffee and Tea Plants

Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5719
Author(s):  
Olga Olejnik ◽  
Anna Masek

The aim of the research was to obtain intelligent and eco-friendly packaging materials by incorporating innovative additives of plant origin. For this purpose, natural substances, including green tea extract (polyphenon 60) and caffeic acid, were added to two types of biodegradable thermoplastics (Ingeo™ Biopolymer PLA 4043D and Bioplast GS 2189). The main techniques used to assess the impact of phytocompounds on materials’ thermal properties were differential scanning calorimetry (DSC) and thermogravimetry (TGA), which confirmed the improved resistance to thermo-oxidation. Moreover, in order to assess the activity of applied antioxidants, the samples were aged using a UV aging chamber and a weathering device, then retested in terms of dynamic mechanical properties (DMA), colour changing, Vicat softening temperature, and chemical structure, as studied using FT-IR spectra analysis. The results revealed that different types of aging did not cause significant differences in thermo-mechanical properties and chemical structure of the samples with natural antioxidants but induced colour changing. The obtained results indicate that polylactide (PLA) and Bioplast GS 2189, the plasticizer free thermoplastic biomaterial containing polylactide and starch (referred to as sPLA in the present article), both with added caffeic acid and green tea extract, can be applied as smart and eco-friendly packaging materials. The composites reveal better thermo-oxidative stability with reference to pure materials and are able to change colour as a result of the oxidation process, especially after UV exposure, providing information about the degree of material degradation.

Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 105
Author(s):  
Sarah Fruehwirth ◽  
Sandra Egger ◽  
Dennis Kurzbach ◽  
Jakob Windisch ◽  
Franz Jirsa ◽  
...  

This study reports the impact of margarine-representative ingredients on its oxidative stability and green tea extract as a promising antioxidant in margarine. Oil-in-water emulsions received much attention regarding factors that influence their oxidative stability, however, water-in-oil emulsions have only been scarcely investigated. Margarine, a widely consumed water-in-oil emulsion, consists of 80–90% fat and is thermally treated when used for baking. As different types of margarine contain varying additives, their impact on the oxidative stability of margarine during processing is of pressing importance. Thus, the influence of different ingredients, such as emulsifiers, antioxidants, citric acid, β-carotene and NaCl on the oxidative stability of margarine, heated at 80 °C for 1 h to accelerate lipid oxidation, was analyzed by the peroxide value and oxidation induction time. We found that monoglycerides influenced lipid oxidation depending on their fatty acyl chain. α-Tocopheryl acetate promoted lipid oxidation, while rosemary and green tea extract led to the opposite. Whereas green tea extract alone showed the most prominent antioxidant effect, combinations of green tea extract with citric acid, β-carotene or NaCl increased lipid oxidation in margarine. Complementary, NMR data suggested that polyphenols in green tea extracts might decrease lipid mobility at the surface of the water droplets, which might lead to chelating of transition metals at the interface and decreasing lipid oxidation.


2021 ◽  
Vol 59 (3) ◽  
Author(s):  
Derya Boyacı ◽  
Pelin Barış Kavur ◽  
Şükrü Gulec ◽  
Ahmet Yemenicioğlu

Research background. The use of gel-based systems, as a novel method for the delivery of natural antimicrobial, antioxidant, and bioactive compounds is a developing innovative solution for the food industry. This research aimed development of multifunctional active edible gels based on gelatine and its composites with improved mechanical properties. Experimental approach. Antilisterial and bioactive composite gels showing different physical and active properties than classical gelatine gel were developed by loading lysozyme and green tea extract into gelatine/starch and gelatine/wax composite gels. The gels were characterized for their mechanical properties, swelling profiles, colour, release profiles, and antimicrobial and bioactive properties. Results and conclusions. Gelatine/wax gels showed 1.3 to 2.1-fold higher firmness and cutting strength than gelatine and gelatine/starch composite gels that had similar firmness and cutting strengths. Work to shear of both composite gels was 1.4 to 1.9-fold higher than that of gelatine gel. The gelatine/starch gel showed the highest water absorption capacity. Green tea extract reduced soluble lysozyme in gels, but composite gels contained higher soluble lysozyme than gelatine gel. All the gels with lysozyme inhibited Listeria innocua growth in the broth media while green tea extract showed antilisterial activity only in gelatine/wax gels. Gels with green tea extract showed antioxidant, antidiabetic (α-glucosidase, and α-amylase inhibition), antihypertensive (angiotensin-converting enzyme inhibition), and antiproliferative activities (on Caco-2 human colon carcinoma cells). However, gelatine and gelatine/wax gels showed the highest antioxidant and antidiabetic activity. The gelatine/wax gels prevented phenolic browning while green tea extract in other gels showed moderate or extensive browning. Novelty and scientific contribution. This work clearly showed the possibility of improving mechanical properties, and modifying water absorption and controlled release profiles of gelatine gels using gelatine/starch and gelatine/wax composites. The novel composite gels reduced browning of incorporated polyphenols and showed antilisterial and bioactive properties.


Author(s):  
Hamid Arazi ◽  
Behzad Taati ◽  
Jalal Kheirkhah ◽  
Samaneh Ramezanpour

Abstract Background Changes in blood pressure (BP) may affect pain. However, the interaction effect of resistance training and green tea on BP and pain has not been studied. The primary aim of this study was to evaluate the impact of resistance training and green tea extract (GTE) on pain variables in hypertensive patients. Secondary aim included determining the effects of BP alterations on pain responses. Methods In a randomized, double-blind, placebo-controlled study, 30 middle-aged sedentary women were randomly divided into resistance training and green tea extract (GR, n = 8), resistance training (R, n = 8), green tea (G, n = 7), and control groups (C, n = 7). The study period consisted of 3 weeks of GTE (~ 245 mg total polyphenols) consumption twice a day followed by 6 weeks of interaction with resistance training. GR and R groups performed two circuits of training with ten repetitions at 50% of 1RM 2 days a week while other two groups had no any regular exercise training. R and C groups also received placebo capsules (maltodextrin) with the same timing. Pain threshold and perception, BP, and heart rate were recorded following the first and last session of training at rest and 5th and 15th minute. Results Pain perception of training groups after the last session was significantly higher than control conditions, and at this time, the magnitude of BP responses was lower in training groups. In proportion to pain threshold, there were no significant differences between groups. Conclusion It seems that training-induced hypotension can alter pain perception in hypertensive women through changes in baroreceptor activation.


2011 ◽  
Vol 23 (5-6) ◽  
pp. 333-336 ◽  
Author(s):  
Tariq Mahmood ◽  
Naveed Akhtar ◽  
Barkat Ali Khan ◽  
Haji M. Shoaib Khan ◽  
Tariq Saeed

2018 ◽  
pp. e4469 ◽  
Author(s):  
David Paul ◽  
Shruthi Surendran ◽  
Patheparapu Chandrakala ◽  
Nanjappan Satheeshkumar

Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 764
Author(s):  
Justin D. Roberts ◽  
Ashley G. B. Willmott ◽  
Liam Beasley ◽  
Mariette Boal ◽  
Rory Davies ◽  
...  

This study investigated the effect of decaffeinated green tea extract (dGTE), with or without antioxidant nutrients, on fat oxidation, body composition and cardio-metabolic health measures in overweight individuals engaged in regular exercise. Twenty-seven participants (20 females, 7 males; body mass: 77.5 ± 10.5 kg; body mass index: 27.4 ± 3.0 kg·m2; peak oxygen uptake (V.O2peak): 30.2 ± 5.8 mL·kg−1·min−1) were randomly assigned, in a double-blinded manner, either: dGTE (400 mg·d−1 (−)-epigallocatechin−3-gallate (EGCG), n = 9); a novel dGTE+ (400 mg·d−1 EGCG, quercetin (50 mg·d−1) and α-lipoic acid (LA, 150 mg·d−1), n = 9); or placebo (PL, n = 9) for 8 weeks, whilst maintaining standardised, aerobic exercise. Fat oxidation (‘FATMAX’ and steady state exercise protocols), body composition, cardio-metabolic and blood measures (serum glucose, insulin, leptin, adiponectin, glycerol, free fatty acids, total cholesterol, high [HDL-c] and low-density lipoprotein cholesterol [LDL-c], triglycerides, liver enzymes and bilirubin) were assessed at baseline, week 4 and 8. Following 8 weeks of dGTE+, maximal fat oxidation (MFO) significantly improved from 154.4 ± 20.6 to 224.6 ± 23.2 mg·min−1 (p = 0.009), along with a 22.5% increase in the exercise intensity at which fat oxidation was deemed negligible (FATMIN; 67.6 ± 3.6% V.O2peak, p = 0.003). Steady state exercise substrate utilisation also improved for dGTE+ only, with respiratory exchange ratio reducing from 0.94 ± 0.01 at week 4, to 0.89 ± 0.01 at week 8 (p = 0.004). This corresponded with a significant increase in the contribution of fat to energy expenditure for dGTE+ from 21.0 ± 4.1% at week 4, to 34.6 ± 4.7% at week 8 (p = 0.006). LDL-c was also lower (normalised fold change of −0.09 ± 0.06) for dGTE+ by week 8 (p = 0.038). No other significant effects were found in any group. Eight weeks of dGTE+ improved MFO and substrate utilisation during exercise, and lowered LDL-c. However, body composition and cardio-metabolic markers in healthy, overweight individuals who maintained regular physical activity were largely unaffected by dGTE.


2010 ◽  
Vol 105 (8) ◽  
pp. 1138-1144 ◽  
Author(s):  
Rosalind J. Miller ◽  
Kim G. Jackson ◽  
Tony Dadd ◽  
Andrew E. Mayes ◽  
A. Louise Brown ◽  
...  

The beneficial effects of green tea catechins, such as the proposed improvement in endothelial function, may be influenced by phase II metabolism during and after absorption. The methylation enzyme, catechol-O-methyltransferase (COMT), has a missense mutation rs4680 (G to A), proposed to result in a 40 % reduction in enzyme activity. In the present pilot study, twenty subjects (ten of each homozygous COMT genotype) were recruited. Green tea extract capsules (836 mg green tea catechins) were given in a fasted state, and a high-carbohydrate breakfast was given after 60 min. Blood samples and vascular function measurements were taken at regular intervals. The change in digital volume pulse stiffness index (SI) from baseline was shown to be different between genotype groups at 120 and 240 min, with a lower SI in the GG individuals (P ≤ 0·044). The change in blood pressure from baseline also differed between genotype groups, with a greater increase in systolic (P = 0·023) and diastolic (P = 0·034) blood pressure at 120 min in the GG group. The AA group was shown to have a greater increase in insulin concentrations at 120 min (P = 0·019) and 180 min (P = 0·008) compared with baseline, despite similar glucose profiles. No genotypic differences were found in vascular reactivity measured using laser Doppler iontophoresis, total nitrite, lipids, plasma total antioxidant capacity or inflammatory markers after ingestion of the green tea extract. In conclusion, SI and insulin response to the glucose load differed between the COMT genotype groups, and this may be suggestive of a green tea extract and genotype interaction.


Planta Medica ◽  
2011 ◽  
Vol 77 (05) ◽  
Author(s):  
A Ali ◽  
X Yang ◽  
Q Shi ◽  
J Greenhaw ◽  
WF Salminen

Sign in / Sign up

Export Citation Format

Share Document