scholarly journals Development of pH-Responsive Polymer Coating as an Alternative to Enzyme-Based Stem Cell Dissociation for Cell Therapy

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 491
Author(s):  
Yu-Jin Kim ◽  
Tae-Jin Lee ◽  
Gun-Jae Jeong ◽  
Jihun Song ◽  
Taekyung Yu ◽  
...  

Cell therapy usually accompanies cell detachment as an essential process in cell culture and cell collection for transplantation. However, conventional methods based on enzymatic cell detachment can cause cellular damage including cell death and senescence during the routine cell detaching step due to an inappropriate handing. The aim of the current study is to apply the pH-responsive degradation property of poly (amino ester) to the surface of a cell culture dish to provide a simple and easy alternative method for cell detachment that can substitute the conventional enzyme treatment. In this study, poly (amino ester) was modified (cell detachable polymer, CDP) to show appropriate pH-responsive degradation under mild acidic conditions (0.05% (w/v) CDP, pH 6.0) to detach stem cells (human adipose tissue-derived stem cells (hADSCs)) perfectly within a short period (less than 10 min). Compared to conventional enzymatic cell detachment, hADSCs cultured on and detached from a CDP-coated cell culture dish showed similar cellular properties. We further performed in vivo experiments on a mouse hindlimb ischemia model (1.0 × 106 cells per limb). The in vivo results indicated that hADSCs retrieved from normal cell culture dishes and CDP-coated cell culture dishes showed analogous therapeutic angiogenesis. In conclusion, CDP could be applied to a pH-responsive cell detachment system as a simple and easy nonenzymatic method for stem cell culture and various cell therapies.

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Yanhong Zhang ◽  
Honghong Yao

Stem cell therapy is a promising potential therapeutic strategy to treat cerebral ischemia in preclinical and clinical trials. Currently proposed treatments for stroke employing stem cells include the replacement of lost neurons and integration into the existing host circuitry, the release of growth factors to support and promote endogenous repair processes, and the secretion of extracellular vesicles containing proteins, noncoding RNA, or DNA to regulate gene expression in recipient cells and achieve immunomodulation. Progress has been made to elucidate the precise mechanisms underlying stem cell therapy and the homing, migration, distribution, and differentiation of transplanted stem cells in vivo using various imaging modalities. Noninvasive and safe tracer agents with high sensitivity and image resolution must be combined with long-term monitoring using imaging technology to determine the optimal therapy for stroke in terms of administration route, dosage, and timing. This review discusses potential therapeutic mechanisms of stem cell transplantation for the treatment of stroke and the limitations of current therapies. Methods to label transplanted cells and existing imaging systems for stem cell labeling and in vivo tracking will also be discussed.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Sung Keun Kang ◽  
Il Seob Shin ◽  
Myung Soon Ko ◽  
Jung Youn Jo ◽  
Jeong Chan Ra

Human mesenchymal stem cells (MSCs) communicate with other cells in the human body and appear to “home” to areas of injury in response to signals of cellular damage, known as homing signals. This review of the state of current research on homing of MSCs suggests that favorable cellular conditions and thein vivoenvironment facilitate and are required for the migration of MSCs to the site of insult or injuryin vivo. We review the current understanding of MSC migration and discuss strategies for enhancing both the environmental and cellular conditions that give rise to effective homing of MSCs. This may allow MSCs to quickly find and migrate to injured tissues, where they may best exert clinical benefits resulting from improved homing and the presence of increased numbers of MSCs.


2021 ◽  
Author(s):  
Sevil Kestane

This overview was evaluated by the development of diabetic retinopathy (DR) and the stem cell therapy approach. DR is a microvascular complication of diabetes mellitus, characterized by damage to the retinal blood vessels leading to progressive loss of vision. However, the pathophysiological mechanisms are complicated and not completely understood yet. The current treatment strategies have included medical, laser, intravitreal, and surgical approaches. It is known that the use of mesenchymal stem cells (MSC), which has a great potential, is promising for the treatment of many degenerative disorders, including the eye. In retinal degenerative diseases, MSCs were ameliorated retinal neurons and retinal pigmented epithelial cells in both in vitro and in vivo studies. Stem cell therapies show promise in neurodegenerative diseases. However, it is very important to know which type of stem cell will be used in which situations, the amount of stem cells to be applied, the method of application, and its physiological/neurophysiological effects. Therefore, it is of great importance to evaluate this subject physiologically. After stem cell application, its safety and efficacy should be followed for a long time. In the near future, widespread application of regenerative stem cell therapy may be a standard treatment in DR.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Boxian Huang ◽  
Chunfeng Qian ◽  
Chenyue Ding ◽  
Qingxia Meng ◽  
Qinyan Zou ◽  
...  

Abstract Background With the development of regenerative medicine and tissue engineering technology, almost all stem cell therapy is efficacious for the treatment of premature ovarian failure (POF) or premature ovarian insufficiency (POI) animal models, whereas little stem cell therapy has been practiced in clinical settings. The underlying molecular mechanism and safety of stem cell treatment in POI are not fully understood. In this study, we explored whether fetal mesenchymal stem cells (fMSCs) from the liver restore ovarian function and whether melatonin membrane receptor 1 (MT1) acts as a regulator for treating POI disease. Methods We designed an in vivo model (chemotherapy-induced ovary damage) and an in vitro model (human ovarian granulosa cells (hGCs)) to understand the efficacy and molecular cues of fMSC treatment of POI. Follicle development was observed by H&E staining. The concentration of sex hormones in serum (E2, AMH, and FSH) and the concentration of oxidative and antioxidative metabolites and the enzymes MDA, SOD, CAT, LDH, GR, and GPx were measured by ELISA. Flow cytometry (FACS) was employed to detect the percentages of ROS and proliferation rates. mRNA and protein expression of antiapoptotic genes (SURVIVIN and BCL2), apoptotic genes (CASPASE-3 and CASPASE-9), and MT1 and its downstream genes (JNK1, PCNA, AMPK) were tested by qPCR and western blotting. MT1 siRNA and related antagonists were used to assess the mechanism. Results fMSC treatment prevented cyclophosphamide (CTX)-induced follicle loss and recovered sex hormone levels. Additionally, fMSCs significantly decreased oxidative damage, increased oxidative protection, improved antiapoptotic effects, and inhibited apoptotic genes in vivo and in vitro. Furthermore, fMSCs also upregulated MT1, JNK1, PCNA, and AMPK at the mRNA and protein levels. With MT1 knockdown or antagonist treatment in normal hGCs, the protein expression of JNK1, PCNA, and AMPK and the percentage of proliferation were impaired. Conclusions fMSCs might play a crucial role in mediating follicular development in the POI mouse model and stimulating the activity of POI hGCs by targeting MT1.


2020 ◽  
Vol 6 (12) ◽  
pp. eaay7629 ◽  
Author(s):  
Zongjie Wang ◽  
Mark Gagliardi ◽  
Reza M. Mohamadi ◽  
Sharif U. Ahmed ◽  
Mahmoud Labib ◽  
...  

The ability to detect rare human pluripotent stem cells (hPSCs) in differentiated populations is critical for safeguarding the clinical translation of cell therapy, as these undifferentiated cells have the capacity to form teratomas in vivo. The detection of hPSCs must be performed using an approach compatible with traceable manufacturing of therapeutic cell products. Here, we report a novel microfluidic approach, stem cell quantitative cytometry (SCQC), for the quantification of rare hPSCs in hPSC-derived cardiomyocyte (CM) populations. This approach enables the ultrasensitive capture, profiling, and enumeration of trace levels of hPSCs labeled with magnetic nanoparticles in a low-cost, manufacturable microfluidic chip. We deploy SCQC to assess the tumorigenic risk of hPSC-derived CM populations in vivo. In addition, we isolate rare hPSCs from the differentiated populations using SCQC and characterize their pluripotency.


2021 ◽  
pp. 1-9
Author(s):  
Zhang Zichang ◽  
Zhou Fan ◽  
Zheng Jianwei ◽  
Mu Junsheng ◽  
Bo Ping ◽  
...  

BACKGROUND: In stem cell therapy, due to the lack of an effective carrier, a large number of transplanted stem cells are lost and die. Therefore, finding a suitable carrier has become a further direction of stem cell therapy. OBJECTIVE: In research on the co-culture of polycaprolactone (PCL) with 1,1′-Dioctadecyl-3,3,3′,3′- tetramethylindocarbocyanine perchlorate (DiI) labeled bone marrow mesenchymal stem cells (BMSCs), we observe the effect of materials on the growth and proliferation of DiI labeled stem cells, and the effect of DiI labeling on patch preparation, so as to find a kind of biomaterial suitable for the growth and proliferation of BMSCs, and find a suitable cell carrier for stem cell therapy of myocardial infarction and in vivo tracing. METHODS: Clean grade Sprague Dawley rats were selected as experimental objects, BMSCs were isolated and cultured, and the surface markers were identified by flow cytometry. After the BMSCs were cultured for 3 passages, the BMSCs were stained with DiI dye, and the BMSCs DiI and PCL biomaterial film were co-cultured. After 24 hours, the cell growth was observed under fluorescence microscope, and fixed for scanning under electron microscope. The cell proliferation was detected by CCK-8 at 1, 4, 7, 10 days of culture. The measurement data conforming to normal distribution are expressed in the form of mean ± standard deviation (X¯± s). One way ANOVA was used for comparison among groups, LSD analysis was used for pairwise comparison. The difference was statistically significant (P < 0.05). RESULTS: BMSCs were strongly positive for CD90, CD44H, but negative for CD11b/c, CD45. Under fluorescence microscope, BMSCs DiI showed red light, fusiform or polygonal. Under the scanning electron microscope, the cell patch formed by co-culture of PCL film and DiI-BMSCs had a large number of cells on the surface and normal cell state. CCK-8 assay showed that the OD value on the first day was 0.330 ± 0.025; The OD value was 0.620 ± 0.012 on the 4th day, 1.033 ± 0.144 on the 7th day and 1.223 ± 0.133 on the 10th day. There was significant difference among the time points (P < 0.05). CONCLUSIONS: The cell patch made of PCL film and DiI labeled BMSCs can survive and proliferate on the surface, so it can be used as a scaffold material for stem cell therapy in vivo.


2012 ◽  
Vol 8 (3) ◽  
pp. 953-962 ◽  
Author(s):  
Mevci Ozdemir ◽  
Ayhan Attar ◽  
Isinsu Kuzu ◽  
Murat Ayten ◽  
Enver Ozgencil ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Kai Zhu ◽  
Jun Li ◽  
Yulin Wang ◽  
Hao Lai ◽  
Chunsheng Wang

Stem cell therapy has attracted increasing attention as a promising treatment strategy for cardiac repair in ischemic heart disease. Nanoparticles (NPs), with their superior physical and chemical properties, have been widely utilized to assist stem cell therapy. With the help of NPs, stem cells can be genetically engineered for enhanced paracrine profile. To further understand the fate and behaviors of stem cells in ischemic myocardium, imaging NPs can label stem cells and be trackedin vivounder multiple modalities. Besides that, NPs can also be used to enhance stem cell retention in myocardium. These facts have raised efforts on the development of more intelligent and multifunctional NPs for cellular application. Herein, an overview of the applications of NPs-assisted stem cell therapy is given. Key issues and future prospects are also critically addressed.


2018 ◽  
Vol 6 (3) ◽  
pp. 114-119 ◽  
Author(s):  
Magdalena Rojewska ◽  
Małgorzata Popis ◽  
Maurycy Jankowski ◽  
Dorota Bukowska ◽  
Paweł Antosik ◽  
...  

AbstractStem cells are cells that have the potential to replicate and/or differentiate, becoming any tissue. This process could be theoretically repeated indefinitely and can be used to create or fix damaged parts any organ. There are many in vivo factors that cause stem cells to replicate and differentiate. Many of these interactions and mechanisms are still unknown. In vitro models have been successful in inducing stem cells to differentiate into the desired lineage using controlled methods. Recently, epithelial tissue has been successfully created using scaffolds on which stem cells are grown in vitro and then transplanted into the host. This transition creates significant problems. This is because in vitro -grown stem cells or stem cell-derived tissues are created in an isolated environment where virtually every aspect can be monitored and controlled. In vivo monitoring and controlling is significantly more difficult for a plethora of reasons. Cells in the body are constantly exposed to many signals and molecules which affect them. Many of the mechanisms behind these interactions and reactions are known but many others are not. As the corpus of knowledge grows, stem cells become closer to being applied in a clinical setting. In this paper, we review the current evidence on stem cell therapy in regenerative medicine and some of the challenges this field faces.


Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Hao Chen ◽  
Huaxiao Yang ◽  
Chen Zhang ◽  
Si Chen ◽  
Xin Zhao ◽  
...  

Stem cell therapy holds high promises in regenerative medicine. The major challenge of clinical translation is to precisely and quantitatively evaluate the in vivo cell distribution, migration, and engraftment, which cannot be easily achieved by current techniques. To address this issue, for the first time, we have developed a molecular cell tracker with a strong fluorescence signal in the second near-infrared (NIR-II) window (1,000-1,700 nm) for real-time monitoring of in vivo cell behaviors in both healthy and diseased animal models. The NIR-II tracker (CelTrac1000) has shown complete cell labeling with low cytotoxicity and profound long-term tracking ability for 30 days in high spatiotemporal resolution for semiquantification of the biodistribution of transplanted stem cells. Taking advantage of the unique merits of CelTrac1000, the responses of transplanted stem cells to different diseased environments have been discriminated and unveiled. Furthermore, we also demonstrate CelTrac1000 as a universal and effective technique for ultrafast real-time tracking of the cellular migration and distribution in a 100 μm single-cell cluster spatial resolution, along with the lung contraction and heart beating. As such, this NIR-II tracker will shift the optical cell tracking into a single-cell cluster and millisecond temporal resolution for better evaluating and understanding stem cell therapy, affording optimal doses and efficacy.


Sign in / Sign up

Export Citation Format

Share Document