scholarly journals Stem Cell-Engineered Nanovesicles Exert Proangiogenic and Neuroprotective Effects

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1078
Author(s):  
Han Young Kim ◽  
Suk Ho Bhang

As a tissue regeneration strategy, the utilization of mesenchymal stem cells (MSCs) has drawn considerable attention. Comprehensive research using MSCs has led to significant preclinical or clinical outcomes; however, improving the survival rate, engraftment efficacy, and immunogenicity of implanted MSCs remains challenging. Although MSC-derived exosomes were recently introduced and reported to have great potential to replace conventional MSC-based therapeutics, the poor production yield and heterogeneity of exosomes are critical hurdles for their further applications. Herein, we report the fabrication of exosome-mimetic MSC-engineered nanovesicles (MSC-NVs) by subjecting cells to serial extrusion through filters. The fabricated MSC-NVs exhibit a hydrodynamic size of ~120 nm, which is considerably smaller than the size of MSCs (~30 μm). MSC-NVs contain both MSC markers and exosome markers. Importantly, various therapeutic growth factors originating from parent MSCs are encapsulated in the MSC-NVs. The MSC-NVs exerted various therapeutic effects comparable to those of MSCs. They also significantly induced the angiogenesis of endothelial cells and showed neuroprotective effects in damaged neuronal cells. The results collectively demonstrate that the fabricated MSC-NVs can serve as a nanosized therapeutic agent for tissue regeneration.

2019 ◽  
Vol 1 (1) ◽  
pp. 36-39
Author(s):  
Bernd Giebel ◽  
Verena Börger ◽  
Mario Gimona ◽  
Eva Rohde

Human mesenchymal stem/stromal cells (MSCs) represent a promising tool in regenerative medicine. Until now, almost one thousand NIH-registered clinical trials investigated their immunomodulatory and pro-regenerative therapeutic potential in various diseases. Despite controversial reports regarding the efficacy of MSC-treatments, MSCs appear to exert their beneficial effects in a paracrine manner rather than by cell replacement. In this context, extracellular vesicles (EVs), such as exosomes and microvesicles, seem to induce the MSCs’ therapeutic effects. Here, we briefly illustrate the potential of MSC-EVs as therapeutic agent of the future.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Jin-ze Li ◽  
Shan-shan Meng ◽  
Xiu-Ping Xu ◽  
Yong-bo Huang ◽  
Pu Mao ◽  
...  

Mesenchymal stem cells (MSCs) may improve the treatment of acute respiratory distress syndrome (ARDS). However, few studies have investigated the effects of mechanically stretched -MSCs (MS-MSCs) in in vitro models of ARDS. The aim of this study was to evaluate the potential therapeutic effects of MS-MSCs on pulmonary microvascular endothelium barrier injuries induced by LPS. We introduced a cocultured model of pulmonary microvascular endothelial cell (EC) and MSC medium obtained from MSCs with or without mechanical stretch. We found that Wright-Giemsa staining revealed that MSC morphology changed significantly and cell plasma shrank separately after mechanical stretch. Cell proliferation of the MS-MSC groups was much lower than the untreated MSC group; expression of cell surface markers did not change significantly. Compared to the medium from untreated MSCs, inflammatory factors elevated statistically in the medium from MS-MSCs. Moreover, the paracellular permeability of endothelial cells treated with LPS was restored with a medium from MS-MSCs, while LPS-induced EC apoptosis decreased. In addition, protective effects on the remodeling of intercellular junctions were observed when compared to LPS-treated endothelial cells. These data demonstrated that the MS-MSC groups had potential therapeutic effects on the LPS-treated ECs; these results might be useful in the treatment of ARDS.


2007 ◽  
Vol 342-343 ◽  
pp. 193-196
Author(s):  
Ho Yun Chung ◽  
Eun Jung Oh ◽  
Jin Hyun Choi ◽  
Byung Chae Cho

Mesenchymal stem cells (MSCs) from bone marrow seem to be the one of best candidates to regenerate injured tissue. However, recent advances in application of MSCs toward large tissue regeneration are faced with lack of vascularity. In this study, endothelial cells differentiated from MSCs were applied for constructing tissue-engineered bone and cartilage. It was found that endothelial cells from MSCs play an important role of providing vasculature.


Sign in / Sign up

Export Citation Format

Share Document