scholarly journals Structure-Gas Barrier Property Relationship in a Novel Polyimide Containing Naphthalene and Amide Groups: Evaluation by Experiments and Simulations

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1402
Author(s):  
Yi Zeng ◽  
Yiwu Liu ◽  
Jinghua Tan ◽  
Jie Huang ◽  
Junjie Liu ◽  
...  

In order to meet the increasingly stringent requirements for heat resistance and barrier properties in the packaging and electronic device encapsulation field. A high-barrier polyimide (NAPPI) contains naphthalene ring and amide group was prepared by polymerization of a novel diamine (NAPDA) and pyromellitic dianhydride. The structure and properties of diamine monomers and polymers were characterized. Results show that the NAPPI exhibits superior barrier properties with extremely low water vapor and oxygen transmission rate values of 0.14 g·m−2·day−1 and 0.04 cm3·m−2·day−1, respectively. In addition, the NAPPI presents outstanding mechanical properties and thermal stability as well. This article attempts to explore the relationship between NAPPI structure and barrier properties by combining experiment and simulation. Studies on positron annihilation lifetime spectroscopy, Wide angle X-ray diffractograms and molecular dynamics simulations prove that the NAPPI has smaller interplanar spacing and higher chain regularity. In addition, the strong chain rigidity and interchain cohesion of NAPPI due to the presence of the rigid naphthalene ring and a large number of hydrogen bond interactions formed by amide groups result in compact chain packing and smaller free volume, which reduces the solubility and diffusibility of small molecules in the matrix. In general, the simulation results are consistent with the experimental results, which are important for understanding the barrier mechanism of NAPPI.

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2097
Author(s):  
Qian Wen ◽  
Ao Tang ◽  
Chengliang Chen ◽  
Yiwu Liu ◽  
Chunguang Xiao ◽  
...  

This study designed and synthesised a meta-amide-substituted dianiline monomer (m-DABA) as a stereoisomer of DABA, a previously investigated para-amide-substituted dianiline monomer. This new monomer was polymerised with pyromellitic dianhydride (PMDA) to prepare a polyimide film (m-DABPI) in a process similar to that employed in a previous study. The relationship between the substitution positions on the monomer and the gas barrier properties of the polyimide film was investigated via molecular simulation, wide-angle X-ray diffraction (WXRD), and positron annihilation lifetime spectroscopy (PALS) to gain deeper insights into the gas barrier mechanism. The results showed that compared with the para-substituted DABPI, the m-DABPI exhibited better gas barrier properties, with a water vapour transmission rate (WVTR) and an oxygen transmission rate (OTR) as low as 2.8 g·m−2·d−1 and 3.3 cm3·m−2·d−1, respectively. This was because the meta-linked polyimide molecular chains were more tightly packed, leading to a smaller free volume and lower molecular chain mobility. These properties are not conducive to the permeation of small molecules into the film; thus, the gas barrier properties were improved. The findings have significant implications for the structural design of high-barrier materials and could promote the development of flexible display technology.


2015 ◽  
Vol 15 (10) ◽  
pp. 8348-8352 ◽  
Author(s):  
Min Eui Lee ◽  
Hyoung-Joon Jin

Poly(vinyl alcohol) (PVA) composites containing graphene oxide (GO) functionalized with PVA were synthesized via the esterification of the carboxylic groups of GO. The presence of PVA-grafted GO (PVA-g-GO) in the PVA matrix induced strong interactions between the chains of the PVA matrix and allowed the PVA-g-GO to be uniformly dispersed throughout the matrix. The grafting of PVA to GO increased the gas barrier properties of the GO/PVA composites because of the increased compatibility between GO and PVA. The PVA-g-GO/PVA composites were used to coat the surface of poly(ethylene terephthalate) films. These coated films exhibited excellent gas barrier properties; the film containing 0.3 wt% of PVA-g-GO had an oxygen transmission rate (OTR) of 0.025 cc/(m2 · day) and an optical transmittance of 83.8%. As a result, PVA-g-GO/PVA composites that exhibited enhanced gas barrier properties were prepared with a solution mixing method.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2048
Author(s):  
Yiwu Liu ◽  
Ao Tang ◽  
Jinghua Tan ◽  
Xianqing Zhao ◽  
Chengliang Chen ◽  
...  

A high-barrier polyimide (2,7-CPI) was synthesized through the polymerization of pyromellitic dianhydride (PMDA) and a novel diamine (2,7-CDA) containing carbazole moiety. The synthesized diamine and polyimide were fully characterized by elemental analyses, FTIR and NMR. The 2,7-CPI displays very attractive barrier performances, with oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) low to 0.14 cm3·m−2·day−1 and 0.05 g·m−2·day−1, respectively. Meanwhile, 2,7-CPI also exhibits exceptional thermal stability with a glass transition temperature (Tg) of 467 °C, 5% weight-loss temperature (Td5%) of 550 °C under N2 and coefficient of thermal expansion (CTE) of 3.4 ppm/K. The barrier performances of 2,7-CPI are compared with those of a structural analogue (2,7-CPPI) and a typical polyimide (Kapton). Their barrier performances with respect to microstructure were investigated by molecular simulations, wide angle X-ray diffraction (WAXD), and positron annihilation lifetime spectroscopy (PALS). The results show that 2,7-CPI possesses better coplanar structure and more number of intermolecular hydrogen bonds among the three PIs, which result in tight chain packing and thereby high crystallinity, low free volume, and decreased chains mobility. That is, the high crystallinity and low free volume of 2,7-CPI reduce the diffusion and solubility of gases. Meanwhile, the poor chains mobility further decreases the gases diffusion. The reduced diffusion and solubility of gases consequently promote the improvement of barrier properties for 2,7-CPI. The polyimide has a wide application prospect in the field of flexible electronic packaging industries.


2007 ◽  
Vol 353-358 ◽  
pp. 1879-1882 ◽  
Author(s):  
Riichi Murakami ◽  
Katsuhiro Fujikawa ◽  
Daisuke Yonekura

Stainless steel is widely used as a corrosion-resistant material. However, stainless steel corrodes at high temperature (573 K ~) due to the oxidization and grain boundary corrosion. To delay the oxidation at high temperature, coating of gas barrier film will be useful method. The purpose of this study is to improve the corrosion-resistant of SUS304 at high temperature by coating transparent SiOxNy film which has gas barrier properties. In addition, the influence of inlet gas mass flow rate ratio (N2/Ar+N2) on the oxidation properties at 773 K was examined. The SiOxNy films were deposited onto polished SUS304 by unbalanced dc magnetron sputtering apparatus. To examine the oxygen transmission rate (OTR) of SiOxNy films, PET was also used as substrate. The results showed that good OTR was obtained for N2/Ar+N2 < 0.12 on PET substrate. The similar tendency was obtained for SUS304 deposited film heated up to 773 K.


2016 ◽  
Vol 718 ◽  
pp. 10-14 ◽  
Author(s):  
Chuenkhwan Tipachan ◽  
Somjai Kajorncheappunngam

Nanocomposite films based on poly (lactic) acid (PLA) and organically nanoclay Perkalite were prepared by solvent casting method. The incorporation of Perkalite clay in PLA film was characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) techniques. Morphology of PLA/Perkalite film was investigated using scanning electron microscope (SEM). The gas barrier properties of PLA nanocomposite films were determined through oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) measurement. Results from FTIR analysis indicates that Perkalite clay was incorporated in PLA film. SEM images show that dispersion of Perkalite particle on the PLA matrix was good with the additional of clay up to 3 pph (parts of clay per hundred part of PLA). The maximum reduction in OTR and WVTR of that nanocomposite film with Perkalite loading of 3 pph are 76% and 37%, respectively compared with neat PLA film. This proves that gas barrier property of PLA film is improved significantly with incorporation of Perkalite clay. The PLA/Perkalite nanocomposite film is a promising as green based packaging materials.


Holzforschung ◽  
2013 ◽  
Vol 67 (8) ◽  
pp. 899-905 ◽  
Author(s):  
Eva-Lena Hult ◽  
Klaus Koivu ◽  
Janne Asikkala ◽  
Jarmo Ropponen ◽  
Pauli Wrigstedt ◽  
...  

Abstract Lignin, esterified with palmitic and lauric acid chloride, has been studied for the application as coating on fiber-based packaging material. The aim was to improve the barrier properties against water vapor and oxygen of paperboard. The esterification was followed by Fourier transform infrared spectroscopy, 31P nuclear magnetic resonance spectroscopy, and gel permeation chromatography measurements. The lignin esters were applied on paperboard and formed a continuous film. The moisture barrier property of the coated paperboards was characterized by the water vapor transmission rate (WVTR). A significant decrease in WVTR was observed, for example, 40 g m-2 (for 24 h) for a paperboard coated with 10.4 g m-2 hardwood kraft lignin palmitate. The contact angle of water on the lignin ester coatings was high and stable. For all paperboard samples coated with lignin esters, a significant decrease in oxygen transmission rate was observed. Accordingly, lignin palmitate and laurate have a high potential as a barrier materials in packaging applications.


2012 ◽  
Vol 06 ◽  
pp. 413-418
Author(s):  
TAISHI KOBAYASHI ◽  
YOSHIHISA TABATA ◽  
DAISUKE YONEKURA ◽  
RI-ICHI MURAKAMI

The purpose of this study is to clarify the effect of the film thickness of SiO x N y gas barrier film on the thermo-oxidative degradation behavior of gasket rubber sheet with SiO x N y film. SiO x N y film was deposited by DC magnetron sputtering method. SiO x N y films were deposited for deposition time 10, 20, 40 and 60 minutes. Chemical bonding states of SiO x N y films were analyzed by FT-IR. Oxygen transmission rate of SiO x N y films were measured using PET substrate with SiO x N y films. The surface morphology of the film deposited on the gasket rubber sheet was observed using atomic force microscope. Thermo-oxidative degradation of gasket rubber sheet was evaluated by tensile test after heating. Heating of the samples was performed at 160, 170 and 180°C under various heating time. The fracture surface of gasket rubber sheet after tensile test was observed using scanning electron microscope. As a result, it was found that the gas barrier film was effective to delay the thermo-oxidative degradation of gasket rubber sheet, especially heated at 160°C heating.


2012 ◽  
Vol 200 ◽  
pp. 180-185 ◽  
Author(s):  
Zhi Qiang Fang ◽  
Gang Chen ◽  
Yu Sha Liu ◽  
Xin Sheng Chai

Chitosan solution was applied to coated ivory board as a barrier material, and the surface microstructure, oxygen resistance and water vapor permeability of chitosan-coated paper under different coating weight were studied. According to the images of scanning electron microscope(SEM) and Atomic force microscope(AFM), the coated ivory board surface has a smooth contour without pores and cracks after coating with chitosan. Increasing in coating hold-out of chitosan, the smoothness and the oxygen barrier properties of coated paper were improved considerably, but no improvement on water vapor resistance. An Oxygen transmission rate (OTR) of 119.0 cm3/m2•24h•0.1MPa was obtained when the coating weight of chitosan was 3.96 g/m2. Single-layer and double-layer techniques were used to coat coated ivory paper with chitosan; it was found that the OTR of paper, obtaining by double-layer coating technique, was lower than that of single-layer paper at similar coating weight. For the purpose of reducing water vapor transmission rate (WVTR) of chitosan-coated paper, Poly(vinyldene chloride)(PVDC) was applied on the chitosan-coated paper. Water vapor and oxygen barrier properties were enhanced as the coating weight of PVDC increased from 1.05 g/m2to 7.40 g/m2. While the chitosan and PVDC was coated on coated ivory paper through bi-layer technique for 1.96 g/m2and 7.40g/m2, respectively, the WVTR and OTR of paper decreased by 66.3% and 98.0% separately, compared to that of the chitosan-coated paper for 1.96g/m2.


2008 ◽  
Vol 2008 ◽  
pp. 1-11 ◽  
Author(s):  
S. Benali ◽  
A. Olivier ◽  
P. Brocorens ◽  
L. Bonnaud ◽  
M. Alexandre ◽  
...  

Exfoliated nanocomposites are prepared by dispersion of poly(ε-caprolactone) (PCL) grafted montmorillonite nanohybrids used as masterbatches in poly(styrene-co-acrylonitrile) (SAN). The PCL-grafted clay nanohybrids with high inorganic content are synthesized by in situ intercalative ring-opening polymerization ofε-caprolactone between silicate layers organomodified by alkylammonium cations bearing two hydroxyl functions. The polymerization is initiated by tin alcoholate species derived from the exchange reaction of tin(II) bis(2-ethylhexanoate) with the hydroxyl groups borne by the ammonium cations that organomodified the clay. These highly filled PCL nanocomposites (25 wt% in inorganics) are dispersed as masterbatches in commercial poly(styrene-co-acrylonitrile) by melt blending. SAN-based nanocomposites containing 3 wt% of inorganics are accordingly prepared. The direct blend of SAN/organomodified clay is also prepared for sake of comparison. The clay dispersion is characterized by wide-angle X-ray diffraction (WAXD), atomic force microscopy (AFM), and solid state NMR spectroscopy measurements. The thermal properties are studied by thermogravimetric analysis. The flame retardancy and gas barrier resistance properties of nanocomposites are discussed both as a function of the clay dispersion and of the matrix/clay interaction.


2011 ◽  
Vol 295-297 ◽  
pp. 1600-1605
Author(s):  
Gai Mei Zhang ◽  
Qiang Chen ◽  
Cun Fu He ◽  
Shou Ye Zhang

The oxygen transmission rate (OTR) of SiOx coated polyethylene terephthalate (PET) and biaxially oriented polypropylene (BOPP) affected by fine defects is discussed in this paper. With an ultrasonic AFM (UAFM), which is an advantageous to distinguishing tiny defects on/ in the deposited films, it is found that the OTR of the coated films is relevant to the morphology scanned by UAFM. Herein SiOx layers with a thickness in the order of nano-scale were fabricated in 13.56 MHz-radio frequency (RF) -plasma-enhanced chemical vapor deposition (PECVD). The monomer for the coating fabrication is hexamethyldisiloxane (HMDSO). Fourier transform inferred (FTIR) spectra of the deposited coating with a strong peak at 1062 cm-1, corresponding to Si-O-Si stretching vibration, confirm the formation of SiOx coatings through PECVD. The higher OTR value of SiOx coated PET is consistence with defects on film surface and in the subsurface of coatings through UAFM. It obtains that the OTR value of the defect free SiOx coated film was reduced by ca. 89% compared with the defect existence SiOx coated PET.


Sign in / Sign up

Export Citation Format

Share Document