scholarly journals Characterization of Mechanical and Hygroscopic Properties of Individual Canes of Reed

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2193
Author(s):  
Montaña Jiménez-Espada ◽  
Daniel Herrero-Adán ◽  
Rafael González-Escobar

The search for sustainability has led to the utilization of more ecological materials with at least, a similar structural performance to those used at present. In this regard, reed fits the environmental and structural requirements as it is a sustainable and biodegradable lignin-cellulose material with remarkable mechanical properties. This research confirms the reed’s structural efficiency as it demonstrates that it has excellent strength and stiffness in relation to its density. The reed anisotropy has a large impact on its properties. Indeed, the strength and stiffness parallel to the fibers are clearly higher than in the perpendicular direction. The results confirm that strength and stiffness decrease with the moisture content and nodes act as reinforcement in compression and bending. If compared with steel, timber and concrete, the reed possesses the highest value for strength. Hence, reed constitutes a strong candidate for environmentally friendly engineering.

Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 895 ◽  
Author(s):  
Enrique Cuan-Urquizo ◽  
Eduardo Barocio ◽  
Viridiana Tejada-Ortigoza ◽  
R. Pipes ◽  
Ciro Rodriguez ◽  
...  

The increase in accessibility of fused filament fabrication (FFF) machines has inspired the scientific community to work towards the understanding of the structural performance of components fabricated with this technology. Numerous attempts to characterize and to estimate the mechanical properties of structures fabricated with FFF have been reported in the literature. Experimental characterization of printed components has been reported extensively. However, few attempts have been made to predict properties of printed structures with computational models, and a lot less work with analytical approximations. As a result, a thorough review of reported experimental characterization and predictive models is presented with the aim of summarizing applicability and limitations of those approaches. Finally, recommendations on practices for characterizing printed materials are given and areas that deserve further research are proposed.


2020 ◽  
Vol 1 (2) ◽  
Author(s):  
Mayank Agrawal

Present study focuses on the carbon fiber sizing and their effect on overall mechanical properties of composites. Fiber sizing are one of the most important component in the manufacturing of composites. As the sizing are so much of importance in the manufacturing and development of composites which governs mechanical properties such as strength and stiffness. In this review some of the important articles are referred from the widely dispersed literature. This review covers the sizing effect, adhesion between fiber and matrix and characterization of composites


Author(s):  
D. K. K. Cavalcanti ◽  
M. D. Banea ◽  
H. F. M. de Queiroz

Additive manufacturing (AM) also called 3D printing, is an emerging process in the manufacturing sector with increasing new applications in aerospace, prototyping, medical devices and product development, among others. The resistance of the AM part is determined by the chosen material and the printing parameters. As novel materials and AM methods are continuously being developed, there is a need for the development and mechanical characterization of suitable materials for 3D printing. In this study, the influence of the material and the 3D-printing parameters on the mechanical properties of additive manufactured thermoplastic parts was investigated. Three different filaments that are commercially available: Polylactic acid (PLA), acrylonitrile butadiene styrene (ABS) and Tritan were used. Tensile and flexural tests were carried out, in accordance to ASTM standards, to investigate and compare the mechanical properties of the AM parts as a function of material used. The results showed that the type of filaments had the greatest influence on the mechanical properties of the AM parts. The maximum strength and stiffness were obtained for the PLA specimens. Tritan displayed the highest deformation, while the PLA manifested the lowest deformation capacity. The mechanical properties of the printed parts also depend on the printing parameters. The parameters used in this work are a good compromise between the printing time and the mechanical properties.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Lu Chen ◽  
Yichao Rui ◽  
Yihan Zhao

Rock mechanical parameters are of great importance for the construction and design of rock engineering. Rocks are usually subjected to the deteriorating effect of cyclic wetting-drying because of the change in moisture content. The main objective of this study is to reveal the degradation effects of wetting-drying cycles on strength and modulus on varying rocks. Three kinds of sandstones with different mineral constituents are selected for testing. Artificial treatments of cyclic wetting-drying are conducted on respective specimens of the three sandstones (0, 10, 20, 30, and 40 cycles) to simulate the damage of rocks exposed to natural weathering. Uniaxial compressive tests are carried out on sandstone specimens to obtain their strength and modulus. Test results show that, for the tested sandstones, both of the uniaxial compressive strength (UCS) and modulus are reduced as the cyclic number rises. In the first ten cycles, the losses of UCS and modulus are very significant. Subsequently the changes of UCS and modulus become much more placid against cyclic number. When the cyclic number is the same, the loss percentages of rock mechanical properties of the three sandstones are very different which mainly depends on the contents of expandable and soluble minerals.


2020 ◽  
Vol 4 (3) ◽  
pp. 101 ◽  
Author(s):  
David Plappert ◽  
Georg C. Ganzenmüller ◽  
Michael May ◽  
Samuel Beisel

High-performance composites based on basalt fibers are becoming increasingly available. However, in comparison to traditional composites containing glass or carbon fibers, their mechanical properties are currently less well known. In particular, this is the case for laminates consisting of unidirectional plies of continuous basalt fibers in an epoxy polymer matrix. Here, we report a full quasi-static characterization of the properties of such a material. To this end, we investigate tension, compression, and shear specimens, cut from quality autoclave-cured basalt composites. Our findings indicate that, in terms of strength and stiffness, unidirectional basalt fiber composites are comparable to, or better than epoxy composites made from E-glass fibers. At the same time, basalt fiber composites combine low manufacturing costs with good recycling properties and are therefore well suited to a number of engineering applications.


2014 ◽  
Vol 1025-1026 ◽  
pp. 46-49
Author(s):  
Diego Henrique de Almeida ◽  
Eduardo Chahud ◽  
Fabiane Salles Ferro ◽  
Sabrina Fernanda Sartório Poleto ◽  
Tiago Hendrigo de Almeida ◽  
...  

The aim of this work is to determine the main mechanical properties, related to timber structures design, of the Brazilian tropical wood specie:Dipteryxodorata(Aublet) Willd. Tests were conducted according to the guidelines of the Brazilian Code ABNT NBR 7190: 1997 "Design of Timber Structures". Specimens were obtained from a so-called homogeneous clear wood lot, with moisture content around 12% . Mean values ​​of strength and stiffness properties confirmedDipteryxodorata(Aublet) Willd as a good alternative for structural uses.


Author(s):  
Nguyen Tuong Vy ◽  
Nguyen Thi Khoi Pham ◽  
Lam Quoc Ha

Polyvinyl alcohol (PVA) is well-known in the packaging industry, especially in the food and medical fields with the ability to be completely biodegradable and easily soluble in cold water therefore products made from it are the environmentally friendly materials. However, the disadvantages of this polymer as quick dissolubility in water, poor moisture retention, weak mechanical properties reduce its applications. In this study, PVA, reinforced by “green” components at the nanometer-level such as nanocellulose fibers (CNF), graphene oxide (GO) nanosheets showed improvements in properties. Mechanical properties of all of nanocomposite films showed improvements in stress at break and modulus. Especially, reinforced GO and CNF films increased almost doubled and improved more 40% in modulus than the pure PVA film and films reinforced by only GO or CNF. When immersed in water (neutral pH) at room temperature, graphene oxide-reinforced films not only had effective improvements in swelling time but also supported to decrease water retension of film added CNF. The combined reinforcement also indicated a benefit in reducing the rate of water vapor loss of the film as well as the efficiency in declining the moisture absorption of the nanocomposite films. The PVA films reinforced by nanocellulose fibers and graphene oxide sheets overcomed some of the PVA's shortcomings. This helped expanding its applications in the field of environmentally friendly nanocomposite films.


Author(s):  
Gyeung Ho Kim ◽  
Mehmet Sarikaya ◽  
D. L. Milius ◽  
I. A. Aksay

Cermets are designed to optimize the mechanical properties of ceramics (hard and strong component) and metals (ductile and tough component) into one system. However, the processing of such systems is a problem in obtaining fully dense composite without deleterious reaction products. In the lightweight (2.65 g/cc) B4C-Al cermet, many of the processing problems have been circumvented. It is now possible to process fully dense B4C-Al cermet with tailored microstructures and achieve unique combination of mechanical properties (fracture strength of over 600 MPa and fracture toughness of 12 MPa-m1/2). In this paper, microstructure and fractography of B4C-Al cermets, tested under dynamic and static loading conditions, are described.The cermet is prepared by infiltration of Al at 1150°C into partially sintered B4C compact under vacuum to full density. Fracture surface replicas were prepared by using cellulose acetate and thin-film carbon deposition. Samples were observed with a Philips 3000 at 100 kV.


Author(s):  
K.L. More ◽  
R.A. Lowden

The mechanical properties of fiber-reinforced composites are directly related to the nature of the fiber-matrix bond. Fracture toughness is improved when debonding, crack deflection, and fiber pull-out occur which in turn depend on a weak interfacial bond. The interfacial characteristics of fiber-reinforced ceramics can be altered by applying thin coatings to the fibers prior to composite fabrication. In a previous study, Lowden and co-workers coated Nicalon fibers (Nippon Carbon Company) with silicon and carbon prior to chemical vapor infiltration with SiC and determined the influence of interfacial frictional stress on fracture phenomena. They found that the silicon-coated Nicalon fiber-reinforced SiC had low flexure strengths and brittle fracture whereas the composites containing carbon coated fibers exhibited improved strength and fracture toughness. In this study, coatings of boron or BN were applied to Nicalon fibers via chemical vapor deposition (CVD) and the fibers were subsequently incorporated in a SiC matrix. The fiber-matrix interfaces were characterized using transmission and scanning electron microscopy (TEM and SEM). Mechanical properties were determined and compared to those obtained for uncoated Nicalon fiber-reinforced SiC.


Sign in / Sign up

Export Citation Format

Share Document