scholarly journals Application of Construction and Demolition Waste in Civil Construction in the Brazilian Amazon—Case Study of the City of Rio Branco

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2247
Author(s):  
Fernando da Silva Souza ◽  
José Maria Franco de Carvalho ◽  
Gabriela Grotti Silveira ◽  
Vitória Cordeiro Araújo ◽  
Ricardo André Fiorotti Peixoto

The lack of usable aggregates for civil construction in Rio Branco (capital of Acre, a Federal State in the Amazon region) makes the production and use of recycled aggregates from construction and demolition waste (CDW) an alternative of great interest. In this study, a comprehensive characterization of CDW collected from 24 construction sites of six building types and three different construction phases (structures, masonry, and finishing) was carried out. The fine and coarse recycled aggregates were produced and evaluated in 10 different compositions. The aggregates’ performance was evaluated in four mixtures designed for laying and coating mortars with a total replacement of conventional aggregates and a mixture designed for a C25 concrete with 50% and 100% replacement of conventional aggregates. CDW mortars showed lower densities and greater water retention, initial adhesion, and mechanical strength than conventional mortars. CDW concretes presented lower densities and greater resistance to chloride penetration than conventional concrete, with a small mechanical strength reduction. The recycled CDW aggregates proved to be technologically feasible for safe application in mortars and concrete; for this reason, it is believed that the alternative and proposed methodology is of great interest to the Amazonian construction industry, considering the high costs of raw materials and the need for defining and consolidating a sustainable development model for the Amazon region.

Author(s):  
Cinthia Maia Pederneiras ◽  
Maria Del Pilar Durante ◽  
Ênio Fernandes Amorim ◽  
Ruan Landolfo da Silva Ferreira

ABSTRACT: The consumption of natural resources and energy increased proportionally with the growth of the world population and its economic level. There was an increasing exponential consumption of natural resources, which implied an increase in environmental impacts. The construction sector is responsible for a very significant production of construction and demolition waste (CDW). Thus, there is a concern in search of a more sustainable final disposal. Many studies have been investigated the development of new materials with the incorporation of recycled aggregates from CDW. This paper presents a study of performance evaluation of concrete blocks produced with CDW. For that purpose, an experimental campaign was performed, including a characterization of the aggregates used. The incorporation of 100% of fine and coarse recycled aggregates. The mixtures were designed according to the condition of the aggregate (dry, washed or saturated). The performance of these blocks was evaluated in terms of mechanical strength and water absorption. Some additional tests were also performed to deeper analyze of the microstructure of these blocks. To assess the durability of the concrete blocks, a full-scale road was built. The results were very positive, since there were no significant differences between the modified concrete blocks and the reference sample (0% of the CDW). The modified block with fine aggregate presented the best performance of all the blocks, concerning mechanical strength. In addition, the performance of concrete blocks with washed recycled aggregates had a better performance compared to the others. The results obtained were satisfactory for the application of the blocks in the streets with low movement and low load.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1976 ◽  
Author(s):  
Samuel Roque ◽  
Cinthia Maia Pederneiras ◽  
Catarina Brazão Farinha ◽  
Jorge de Brito ◽  
Rosário Veiga

This paper presents a study of incorporation of two types of construction and demolition waste (CDW) in rendering mortars, as aggregates at 0%, 20%, 50% and 100% (by volume). Recycled concrete aggregate (RCA) and mixed recycled aggregate (MRA) were used. The former is mainly composed of cementitious waste and the latter consists of a mixture of non-segregated wastes. The performance of the cement mortars with recycled aggregates was evaluated through an extensive experimental programme. The analysis comprised workability, mechanical strength, water absorption, shrinkage, open porosity and the evaluation of durability by permeability to water under pressure after an artificial accelerated ageing test. The results are considered positive, although as the incorporation of recycled aggregates (both MRA and RCA) increased the mechanical strength, the modulus of elasticity and bulk density decreased, which leads to the production of lighter mortars that are less susceptible to cracking. The modified mortar with 20% of MRA presented the best performance, in terms of mechanical behaviour.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1700
Author(s):  
Glaydson Simões dos Reis ◽  
Marco Quattrone ◽  
Weslei Monteiro Ambrós ◽  
Bogdan Grigore Cazacliu ◽  
Carlos Hoffmann Sampaio

A literature review comprising 163 publications published over a period of 26 years from 1992 to 2018 is presented in this paper. This review discusses the generation and recycling of construction and demolition waste (CDW) as well as its main uses as raw materials for the construction engineering sector. This review pays attention to the use of CDW aggregates for sand, pavements/roads, bricks, ceramics, cementitious materials, and concrete productions, as well its uses as eco-friendly materials for water decontamination. The physical-chemical and mechanical characteristics of recycled aggregates play an important role in their correctly chosen applications. The results found in this literature survey allow us to conclude that recycled aggregates from CDW can be successfully used to produce construction materials with quality comparable to those produced with natural aggregates. We concluded that the use of CDWs as raw materials for manufacturing new construction materials is technically feasible, economical, and constitutes an environmentally friendly approach for a future construction and demolition waste management strategy.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4762
Author(s):  
Marcos Díaz González ◽  
Pablo Plaza Caballero ◽  
David Blanco Fernández ◽  
Manuel Miguel Jordán Vidal ◽  
Isabel Fuencisla Sáez del Bosque ◽  
...  

This research study analysed the effect of adding fine—fMRA (0.25% and 50%)—and coarse—cMRA (0%, 25% and 50%)—mixed recycled aggregate both individually and simultaneously in the development of sustainable recycled concretes that require a lower consumption of natural resources. For this purpose, we first conducted a physical and mechanical characterisation of the new recycled raw materials and then analysed the effect of its addition on fresh and hardened new concretes. The results highlight that the addition of fMRA and/or cMRA does not cause a loss of workability in the new concrete but does increase the amount of entrained air. Regarding compressive strength, we observed that fMRA and/or cMRA cause a maximum increase of +12.4% compared with conventional concrete. Tensile strength increases with the addition of fMRA (between 8.7% and 5.5%) and decreases with the use of either cMRA or fMRA + cMRA (between 4.6% and 7%). The addition of fMRA mitigates the adverse effect that using cMRA has on tensile strength. Regarding watertightness, all designed concretes have a structure that is impermeable to water. Lastly, the results show the feasibility of using these concretes to design elements with a characteristic strength of 25 MPa and that the optimal percentage of fMRA replacement is 25%.


Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 77
Author(s):  
Domingo A. Martín ◽  
Jorge L. Costafreda ◽  
Jorge L. Costafreda ◽  
Leticia Presa

Metropolitan construction and demolition waste (CDW) is currently an important source of recycled materials that, despite having completed their useful life cycle, can be reincorporated into the circular economy process (CEP); however, the recycling process is very selective, and waste material is not always fully satisfactory due to the intrinsic nature of the waste. This work aims to demonstrate and establish how to increase the effectiveness of the construction and demolition waste in more resistant mortars, by mixing it with zeolitised cinerite tuff (ZCT) at varying normalised proportions. To attain the objectives of this research, a series of tests were done: First, a chemical, physical and mineralogical characterisation of the CDW and the ZCT through XRF, XRD, SEM and granulometric methods. Second, a technological test was made to determine the mechanical strength at 7, 28 and 90 days of specimens made with Portland cement (PC) and mixtures of PC/CDW, PC/ZCT, and PC/CDW-ZCT. The results obtained through the characterisation methods showed that the sample of construction and demolition waste consisted of the main phase made of portlandite and tobermorite, and by a secondary phase consisting of quartz, ettringite and calcite; whereas the ZCT has a main phase of mordenite and a secondary phase of smectite (montmorillonite), amorphous materials consisting of devitrified volcanic glass, quartz and plagioclase. Mechanical strength tests established that specimens made with PC/CDW mixtures have very discreet compressive strength values up to 44 MPa at 90 days, whereas specimens made with PC/ZCT mixtures achieved a remarkably high mechanical strength consisting of 68.5 MPa. However, the most interesting conclusion in this research is the good result obtained in mechanical strength of the specimens made up of mixtures of PC/CDW-ZCT, which increased from 52.5 to 62 MPa at 90 days of curing; this fact establishes the positive influence of ZCT on waste in the mortar mixtures, which permits the authors to establish that the objective of the work has been fulfilled. Finally, it can be argued that the results obtained in this research could contribute to more effective use of construction and demolition waste in metropolitan areas.


Detritus ◽  
2021 ◽  
pp. 51-66
Author(s):  
Alessandra Diotti ◽  
Giovanni Plizzari ◽  
Sabrina Sorlini

Construction and demolition activities in Italy and the Lombardy Region produce a considerable amount of wastes that can be valorised as secondary raw materials. The recovery of construction and demolition wastes is severely limited by the lack of consolidated and sustainable treatment chains and by the strong variability of their environmental characteristics that may generate potentially dangerous effects for the environment. The purpose of this study was to evaluate and technically define the current treatment chains in the Province of Brescia (Lombardy) by analyzing three full-scale treatment plants in order to highlight barriers to demolition waste recovery and propose possible solutions and improvement strategies. To best represent the entire management and treatment system, the analysis was developed on all the acceptance, treatment, and final quality control phases. Moreover, chemical composition and leaching data on demolition wastes and recycled aggregates were collected from the three treatment plants and statistically analyzed to assess their potential recovery according to the Italian legislation. Mixed non-hazardous waste is the fraction mostly managed by recycling plants and mixed recycled aggregates are the main products obtained from the treatment. These are mostly used in roads and in geotechnical applications. Chemical composition results showed that the pH is generally alkaline and tin and benzene are the most critical elements for both demolition wastes and recycled aggregates with respect to the regulatory limit values. Total chromium was identified as a critical compound in leachates. The results of the statistical analysis confirmed that chromium was mainly released by cement materials.


2016 ◽  
Vol 881 ◽  
pp. 346-350 ◽  
Author(s):  
Luzana Leite Brasileiro ◽  
Fátima Maria de Souza Pereira ◽  
Pablo de Abreu Vieira ◽  
José Milton Elias de Matos

Every year, there is a considerable increase in the exploitation of deposits to supply the market for aggregates. On the other hand, so does the production of solid waste from construction and demolition waste (CDW). In 2010 Brazil approved the PNRS (National Policy on Solid Waste), which sets out how the country should have their waste, encouraging recycling and sustainability. As an alternative to the above problem, this paper aims to investigate the feasibility of partial and total replacement of the asphalt concrete aggregates by recycled aggregates from CDW in order to reduce the environmental impacts caused by the operation of quarries and give an adequate final destination the residue produced by man in construction. Were carried out five (05) projects mixture of: the first (parameter of our research) used only natural aggregates (0% CDW) in the second, third and fourth replaced 25%, 50% and 75% respectively of natural aggregate by the recycled aggregate and the fifth and last, used only recycled aggregates (100% CDW). They carried out the characterization of the aggregates by means of physico-chemical and mechanical, analyzing them with reference based on specific standards paving. For mixtures, they calculated the volumetric parameters and performed mechanical tests of tensile strength and stability. The results indicate that the recycled aggregate, in a defined proportion, can replace the natural aggregate in the flexible pavements


Proceedings ◽  
2018 ◽  
Vol 2 (20) ◽  
pp. 1282 ◽  
Author(s):  
Auxi Barbudo ◽  
José Ramón Jiménez ◽  
Jesús Ayuso ◽  
Adela Pérez Galvín ◽  
Francisco Agrela

Construction and Demolition Waste come from debris generated during construction, renovation and demolition of buildings, roads, and bridges. Recycling and reuse are essential in terms of sustainability, mainly from an environmental point of view. Although the recommendation of the use of these recycled aggregates is currently included in some technical specifications, its use is still not widespread due mainly to the lack of knowledge on their technical application. This work is a compilation of the recommendations proposed in the “Catalogue of road pavements with recycled aggregates”, supported by the construction of experimental stretches. It proposes different structural sections for road pavements by using recycled aggregates.


Sign in / Sign up

Export Citation Format

Share Document