scholarly journals Sorption Properties of Specific Polymeric Microspheres towards Desethyl-Terbuthylazine and 2-Hydroxy-Terbuthylazine: Batch and Column Studies

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2734
Author(s):  
Sylwia Ronka ◽  
Weronika Bodylska

This work investigates the sorption properties of poly(divinylbenzene) modified in the Diels–Alder reaction towards persistent and mobile metabolites of terbuthylazine. The batch experiments were carried out to examine the efficiency of desethyl-terbuthylazine and 2-hydroxy-terbuthylazine adsorption on the specific adsorbent and the impact of different factors on the adsorption process. Results fit well to a pseudo-second order kinetic model. It was confirmed that hydrogen bonds play an important role in the studied systems. Five times greater sorption of 2-hydroxy-terbuthylazine than desethyl-terbuthylazine was observed. The molecular structures of both metabolites exhibit complementarity to the arrangement of functional groups in the polymer but the differences in the physicochemical properties of the desethyl derivative make it a highly mobile compound with higher affinity to the aqueous phase. The equilibrium data in the batch study fit the Freundlich isotherm for 2-hydroxy-terbuthylazine, and for desethyl-terbuthylazine the Temkin and Dubinin–Radushkevich models were better. The adsorption capacities obtained under dynamic conditions were comparable with batch results. For column adsorption modeling the Bohart–Adams, Wolborska, Thomas and Yoon–Nelson models were used. The proposed microspheres can be reused easily with no significant decrease in adsorption capacity by using ethanol as eluent in the desorption.

Toxins ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 338
Author(s):  
Agata Zdarta ◽  
Amanda Pacholak ◽  
Marta Galikowska ◽  
Wojciech Smułek ◽  
Ewa Kaczorek

The effects of hydrocarbons sorption on sand and saponins presence in the system on butylbenzene and tert-butylbenzene biological degradation was investigated. Additionally, the impact of saponins-containing plant extracts on environmental microorganisms was studied. Results of cell surface property measurements in samples with saponins only revealed changes in cell surface hydrophobicity, electrokinetic potential and membrane permeability when compared to corresponding values for glucose-grown microbes. Subsequently, in sorption experiments, the hydrocarbon adsorption kinetics in bacteria-free samples were better explained with the pseudo-second order kinetic model as compared to the pseudo-first order and intraparticular diffusion models. Moreover, the equilibrium data fitted better to the Freundlich isotherm for both benzene derivatives. In the samples combining hydrocarbons sorption and biological degradation in the presence of saponins, alkane-substituted hydrocarbons removal was accelerated from 40% to 90% after 14 days and the best surfactant in this aspect was S. officinalis extract.


2012 ◽  
Vol 2 (2) ◽  
pp. 95-102
Author(s):  
Kamal Uddin Ahamad ◽  
Mohammad Jawed

Groundwater is the main source of domestic water for the rural population of Assam, India, which contains arsenic (As(III)) in the range 50–200 μg L−1. The people use variants of indigenous household iron filter units fabricated using community prepared wooden charcoal (CPWC) as one of the filtering medium to remove excess concentration of Fe(II), but no efforts are made to reduce As(III) levels. The present work evaluates the potential of CPWC for As(III) removal through batch and continuous column studies. The As(III) uptake appears to be rapid in the first 60 min, and achieves equilibrium by 180 min. The pseudo-second-order kinetic model best describes the experimental kinetics data. The Freundlich isotherm represents the equilibrium data. The continuous column studies yield decreased volume of treated water at breakthrough with increase in flow rates, whereas the volume of treated water increases with increase in bed depth. The error between predicted and experimental values of service time varies between 0.28 and 21.85%. The study indicates significant potential of CPWC for As(III) removal.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Tamirat Dula ◽  
Khalid Siraj ◽  
Shimeles Addisu Kitte

This study reports on the adsorption of Hexavalent Chromium from aqueous solutions using activated carbon prepared from bamboo (Oxytenanthera abyssinica) waste by KOH activation heating in an electrical furnace at 1073 K for 3 hrs. Batch adsorption experiments were also carried out as a function of pH, contact time, initial concentration of the adsorbate, adsorbent dosage, and temperature of the solution. Kinetic studies of the data showed that the adsorption follows the pseudo-second-order kinetic model. Thermodynamic parameters showed that adsorption on the surface of BWAC was feasible, spontaneous in nature, and exothermic between temperatures of 298 and 318 K. The equilibrium data better fitted the Freundlich isotherm model for studying the adsorption behavior of Hexavalent Chromium by BWAC. IR spectrum for loaded and unloaded BWAC was obtained using FT-IR spectrophotometer. Adsorption efficiency and capacity of Hexavalent Chromium were found to be 98.28% at pH 2 and 59.23 mg/g at 300 K.


2011 ◽  
Vol 183-185 ◽  
pp. 362-366 ◽  
Author(s):  
Jun Li ◽  
Ming Zhen Hu

Adsorption removal of a cationic dye, rhodamine B (RhB) from water onto rectorite and sepiolite was investigated. The rectorite and sepiolite were characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). Attempts were made to fit the isothermal data using Langmuir and Freundlich equations. The experimental results have demonstrated that the equilibrium data are fitted well by a Freundlich isotherm equation. Pseudo-first-order and pseudo-second-order models were considered to evaluate the rate parameters. The experimental data were well described by the pseudo-second-order kinetic model. The results indicate that the rectorite exhibited higher adsorption capacity for the removal of RhB than sepiolite and could be employed as a low-cost alternative in wastewater treatment for the removal of cationic dyes.


2015 ◽  
Vol 69 (6) ◽  
pp. 667-677 ◽  
Author(s):  
Marija Pavlovic ◽  
Ivan Nikolic ◽  
Milica Milutinovic ◽  
Suzana Dimitrijevic-Brankovic ◽  
Slavica Siler-Marinkovic ◽  
...  

This paper has demonstrated the valorization of inexpensive and readily available restaurant waste containing most consumed food and beverage residues as adsorbents for methylene blue dye. Coffee, tea, lettuce and citrus waste have been utilized without any pre-treatment, thus the adsorption capacities and dye removal efficiency were determined. Coffee waste showed highest adsorbent capacity, followed by tea, lettuce and citrus waste. The dye removal was more effective as dye concentration increases from 5 up to 60 mg/L. The favorable results obtained for lettuce waste have been especially encouraged, as this material has not been commonly employed for sorption purposes. Equilibrium data fitted very well in a Freundlich isotherm model, whereas pseudo-second-order kinetic model describes the process behavior. Restaurant waste performed rapid dye removal at no cost, so it can be adopted and widely used in industries for contaminated water treatment.


Author(s):  
Ernesto Jr. S. Cajucom ◽  
◽  
Lolibeth V. Figueroa ◽  

This study was carried out to investigate the efficiency of raw pili shell (RPS) and the surface modified pili shell using EDTA (EMPS) and oxalic acid (OMPS). A comparative study on the adsorption capacity of the adsorbents was performed against lead (Pb2+) from aqueous solution. The adsorbents were characterized by FTIR, which showed higher peak of adsorption bands of carboxylic groups on the acid modified pili shells. Scanning electron microscope orSEM was also used to describe the surface morphology of the adsorbents. The linear form of Langmuir and Freundlich models were applied to represent adsorption data. The calculated equilibrium data of Pb (II) best fitted to Langmuir compare to Freundlich isotherm model with maximum adsorption capacity (qmax) of 27.03 mg/g and 45.45 mg/g using EMPS and OMPS, respectively. Kinetic sorption models were used to determine the adsorption mechanism and the kinetic data of all the adsorbents correlated (R2=1) wellwith the pseudo second order kinetic model. Among the three adsorbents, OMPS shown higher percent removal of lead compared to RPS and EMPS. The large adsorption capacity rate indicated that chemically modified pili shell in present study has great potential to be used as a cost-effective adsorbent for the removal of lead ions from the water.


2016 ◽  
Vol 18 (2) ◽  
pp. 59-67 ◽  
Author(s):  
Ahmed Hassan Alamin ◽  
Lupong Kaewsichan

Abstract Sorption studies were carried out to investigate removal of 2.4-dichlorophenol (2.4-DCP) from aqueous solution in a fluidized bed by two types of adsorbent mixtures: BC (Bamboo char plus Calcium sulphate), and HBC (Hydroxyapatite plus Bamboo char plus Calcium sulphate); both manufactured in ball shape. The main material bamboo char was characterized by FTIR, DTA and SEM. The adsorption experiments were conducted in a fluidized bed circulation column. Adsorption, isotherms and kinetic studies were established under 180 min operating process time, at different initial 2.4-DCP solution concentrations ranging from 5–10 mg/L, and at different flow rates ranging from 0.25–0.75 L/min. The data obtained fitted well for both the Langmuir and Freundlich isotherm models; indicating favorable condition of monolayer adsorption. The kinetics of both adsorbents complies with the pseudo second-order kinetic model. BC was proven a new effective composite and low cost adsorbent which can be applied in the field of wastewater treatment, and it can also play an important role in industry water treatment.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2081 ◽  
Author(s):  
Sun-Wook Jeong ◽  
Hyo Kim ◽  
Jung Yang ◽  
Yong Choi

As concerns are increasing about drinking water contamination with heavy metals, we investigated the possible use of a pellicle (floating biofilm)-like biofilm-producing microorganism as a biosorbent for the treatment of Pb(II) in aqueous solutions. The bacterial pellicle-producing Methylobacterium hispanicum EM2 strain (EM2) was newly isolated from mine tailing soil, and we investigated its use as a biosorbent for treating a Pb(II)-contaminated aqueous solution. The EM2 strain was strongly resistant to Pb(II) up to a concentration of 800 mg/L, and achieved remarkable adsorption performance (adsorption rate and maximum adsorption capacity of 96% ± 3.2% and 79.84 mg/g, respectively) under optimal conditions (pH, biomass content, contact time, and initial Pb(II) concentration of 7.1 g/L, 60 min, and 10 mg/L, respectively). The adsorption of Pb(II) was characterized by scanning electron microscopy-energy dispersive x-ray spectroscopy and Fourier-transform infrared analysis. The equilibrium data matched the Freundlich isotherm model well, indicating the occurrence of multilayer adsorption of Pb(II) onto the heterogeneous surface of the EM2 strain, which was also consistent with the pseudo-second-order kinetic model (R2 = 0.98). The high Pb(II) removal efficiency was also confirmed by conducting an adsorption experiment using Pb(II)-contaminated industrial wastewater.


2018 ◽  
Vol 52 ◽  
pp. 54-70 ◽  
Author(s):  
Seyedeh Mahsa Seyed Danesh ◽  
Hossein Faghihian ◽  
Shahab Shariati

The sulfonic acid-functionalized KIT-6 magnetite mesoporous silica nanoparticles (Fe3O4@SiO2@KIT-6-SO3H NPs) were prepared as an adsorbent and used for the removal of methyl green from aqueous solutions. Characterization of the obtained adsorbent was done by FT-IR, SEM and EDX instruments. According to the experimental results, about 96.4 % of dye was removed from aqueous solutions at the adsorbent amount of 3.2 g L-1at pH = 3 and ionic strength = 0 during 10 min. The kinetic results indicated that the pseudo-second-order kinetic model was the best model for describing the adsorption kinetic ( = 0.9999). The isotherm analysis demonstrated that the equilibrium data were well fitted to the Freundlich isotherm model, showing a multilayer adsorption of the dye on the adsorbent surface. The maximum adsorption capacity for methyl green was obtained 196 mg g-1. Furthermore, the Fe3O4@SiO2-KIT-6-SO3H NPs could be simply recovered by external magnet and it exhibited recyclability and reusability for six cycles. The results showed that the Fe3O4@SiO2-KIT-6-SO3H NPs are appropriate adsorbent for removal of methyl green from real wastewater samples.


2019 ◽  
Vol 25 (4) ◽  
pp. 55-69
Author(s):  
Omar Hisham Fadhil ◽  
Mohammed Y. Eisa

A comparative study was done on the adsorption of methyl orange dye (MO) using non-activated and activated corn leaves with hydrochloric acid as an adsorbent material. Scanning electron microscopy (SEM) and Fourier Transform Infrared spectroscopy (FTIR) were utilized to specify the properties of adsorbent material. The effect of several variables (pH, initial dye concentration, temperature, amount of adsorbent and contact time) on the removal efficiency was studied and the results indicated that the adsorption efficiency increases with the increase in the concentration of dye, adsorbent dosage and contact time, while inversely proportional to the increase in pH and temperature for both the treated and untreated corn leaves. The equilibrium data is best fitted to Freundlich isotherm for untreated adsorbent, while Langmuir isotherm show best agreement with the data when the treated adsorbent is used. The rate of adsorption was found to follow the pseudo first order kinetic model (PFO) when non-activated adsorbent is used, while the pseudo second order model (PSO) is fitted to the adsorption data using activated adsorbent.  


Sign in / Sign up

Export Citation Format

Share Document