scholarly journals Dynamic Mechanical Properties of Several High-Performance Single Fibers

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3574
Author(s):  
Xudong Lei ◽  
Kailu Xiao ◽  
Xianqian Wu ◽  
Chenguang Huang

High-performance fiber-reinforced composites (FRCs) are widely used in bulletproof structures, in which the mechanical properties of the single fibers play a crucial role in ballistic resistance. In this paper, the quasi-static and dynamic mechanical properties of three commonly used fibers, single aramid III, polyimide (PI), and poly-p-phenylenebenzobisoxazole (PBO) fibers are measured by a small-scale tensile testing machine and mini-split Hopkinson tension bar (mini-SHTB), respectively. The results show that the PBO fiber is superior to the other two fibers in terms of strength and elongation. Both the PBO and aramid III fibers exhibit an obvious strain-rate strengthening effect, while the tensile strength of the PI fiber increases initially, then decreases with the increase in strain rate. In addition, the PBO and aramid III fibers show ductile-to-brittle transition with increasing strain rate, and the PI fiber possesses plasticity in the employed strain rate range. Under a high strain rate, a noticeable radial splitting and fibrillation is observed for the PBO fiber, which can explain the strain-rate strengthening effect. Moreover, the large dispersion of the strength at the same strain rate is observed for all the single fibers, and it increases with increasing strain rate, which can be ascribed to the defects in the fibers. Considering the effect of strain rate, only the PBO fiber follows the Weibull distribution, suggesting that the hypothesis of Weibull distribution for single fibers needs to be revisited.

2020 ◽  
Vol 27 (08) ◽  
pp. 1950191
Author(s):  
TAO WANG ◽  
WEILIN QIAO ◽  
SHENG WANG ◽  
ZHAN LI ◽  
HAO WANG ◽  
...  

The dynamic mechanical properties of Ti-6Al-4V alloy prepared by laser direct deposition (LDD) at different strain rates are of great significance for the application of LDD technology in the manufacture and repair of aero-engine parts. The quasi-static tensile test and dynamic compression test of Ti-6Al-4V alloy prepared by LDD (LDD-Ti-6Al-4V) were carried out under the quasi-static and high strain rate using INSTRON-5982 tensile test equipment and Split Hopkinson pressure bar (SHPB) equipment. The true stress–strain curve is obtained, which indicates that the LDD-Ti-6Al-4V has a strain rate strengthening effect. Moreover, the Johnson–Cook (J–C) constitutive model of LDD-Ti-6Al-4V was fitted based on experimental data, and the experimental process of SHPB was numerically simulated. The simulation results are basically the same as the experimental results, which proves the correctness of the J–C constitutive model of LDD-Ti-6Al-4V.


2018 ◽  
Vol 910 ◽  
pp. 123-129 ◽  
Author(s):  
X.N. Mu ◽  
H.N. Cai ◽  
Hong Mei Zhang ◽  
Q.B. Fan ◽  
Y. Wu

In this study, the titanium matrix composites (TiMCs) were fabricated by adding graphene nanoplatelets (GNPs). The dynamic compression test was carried out to study the effect of strain-rate and the GNPs content on dynamic mechanical properties of GNPs/Ti. Results show that the GNPs content (0wt%~0.8wt%) correspond to specific microstructure which affect the dynamic mechanical properties of the composites. Under high strain-rate (3500s-1), the 0.4wt%GNPs/Ti has the highest dynamic stress (~1860MPa) and strain (~30%). The adiabatic shearing band (ASB) microstructure of GNPs/Ti with various GNPs content has been observed under 3500s-1 strain-rate and the ASB microstructure evolution of 0.4wt%GNPs/Ti under different strain rate was investigated in particular.


Entropy ◽  
2019 ◽  
Vol 21 (12) ◽  
pp. 1154
Author(s):  
Bingfeng Wang ◽  
Chu Wang ◽  
Bin Liu ◽  
Xiaoyong Zhang

The dynamic mechanical properties and microstructure of the (Al0.5CoCrFeNi)0.95Mo0.025C0.025 high entropy alloy (HEA) prepared by powder extrusion were investigated by a split Hopkinson pressure bar and electron probe microanalyzer and scanning electron microscope. The (Al0.5CoCrFeNi)0.95Mo0.025C0.025 HEA has a uniform face-centered cubic plus body-centered cubic solid solution structure and a fine grain-sized microstructure with a size of about 2 microns. The HEA possesses an excellent strain hardening rate and high strain rate sensitivity at a high strain rate. The Johnson–Cook plastic model was used to describe the dynamic flow behavior. Hat-shaped specimens with different nominal strain levels were used to investigate forced shear localization. After dynamic deformation, a thin and short shear band was generated in the designed shear zone and then the specimen quickly fractured along the shear band.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2105 ◽  
Author(s):  
Alon Ratner ◽  
Richard Beaumont ◽  
Iain Masters

Strain rate sensitivity has been widely recognized as a significant feature of the dynamic mechanical properties of lithium-ion cells, which are important for their accurate representation in automotive crash simulations. This research sought to improve the precision with which dynamic mechanical properties can be determined from drop tower impact testing through the use of a diaphragm to minimize transient shock loads and to constrain off-axis motion of the indenter, specialized impact absorbers to reduce noise, and observation of displacement with a high speed camera. Inert pouch cells showed strain rate sensitivity in an increased stiffness during impact tests that was consistent with the poromechanical interaction of the porous structure of the jellyroll with the liquid electrolyte. The impact behaviour of the inert pouch cells was similar to that of an Expanded Polypropylene foam (EPP), with the exception that the inert pouch cells did not show hysteretic recovery under the weight of the indenter. This suggests that the dynamic mechanical behaviour of the inert pouch cells is analogous to a highly damped foam.


2010 ◽  
Vol 452-453 ◽  
pp. 281-284
Author(s):  
Zhong Liang Chang ◽  
Guang Ping Zou ◽  
Wei Ling Zhao ◽  
Yang Cao ◽  
Rui Rui Wang

The continuous basalt fiber (CBF) as inorganic fiber obtained from the basalt melt. It has high elastic modulus, low bulk density, low thermal conductivity, low moisture absorption rate and excellent alkali resistance, etc. In this paper, the split Hopkinson pressure bar (SHPB) technique is used for testing the CBF composite plate and its sandwich structure with aluminum foam core dynamic mechanical properties, and then to study the dynamic properties of CBF composite plate and its aluminum foam sandwich structure under different high strain rate. From the test results we can see that the CBF-foam aluminum sandwich structure has superior energy absorption properties, and also from the experiment results we can obtain that the sandwich structure dynamic stress-strain curves has a typically "three-phase" characteristics and strain rate effect.


Sign in / Sign up

Export Citation Format

Share Document