scholarly journals Wire Arc Additive Manufacturing of Al-Mg Alloy with the Addition of Scandium and Zirconium

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3665
Author(s):  
Taisiya Ponomareva ◽  
Mikhail Ponomarev ◽  
Arseniy Kisarev ◽  
Maxim Ivanov

The proposed paper considers the opportunity of expanding the application area of wire arc additive manufacturing (WAAM) method by means of increasing the strength properties of deposited material, due to the implementation of aluminum wire with the addition of scandium and zirconium. For the experimental research, the welding wire 1575 of the Al-Mg-Sc-Zr system containing 0.23% Sc and 0.19% Zr was selected. The optimal welding parameters, ensuring the defect-free formation of deposited material with low heat input, were used. Porosity level was estimated. The thermal state was estimated by finite element simulation. Simulated thermal state was verified by comparison with thermocouples data. Post-heat treatment parameters that lead to maximum strength with good plasticity were determined. The maximum yield strength (YS) of 268 MPa and ultimate strength (UTS) of 403 MPa were obtained, while the plasticity was determined at least 16.0% in all WAAM specimens.

2020 ◽  
Vol 58 (4) ◽  
pp. 461
Author(s):  
Van Thao Le ◽  
Quang Huy Hoang ◽  
Van Chau Tran ◽  
Dinh Si Mai ◽  
Duc Manh Dinh ◽  
...  

Wire arc additive manufacturing (WAAM) is nowadays gaining much attention from both the academic and industrial sectors for the manufacture of medium and large dimension metal parts because of its high deposition rate and low costs of equipment investment. In the literature, WAAM has been extensively investigated in terms of the shape and dimension accuracy of built parts. However, limited research has focused on the effects of welding parameters on the microstructural characteristics of parts manufactured by this process. In this paper, the effects of welding current in the WAAM process on the shape and the microstructure formation of built thin-walled low-carbon steel components were studied. For this purpose, the thin-walled low-carbon steel samples were built layer-by-layer on the substrates by using an industrial gas metal arc welding robot with different levels of welding current. The shape, microstructures and mechanical properties of built samples were then analyzed. The obtained results show that the welding current plays an important role in the shape stability, but does not significantly influence on the microstructure formation of built thin-walled samples. The increase of the welding current only leads to coarser grain size and resulting in decreasing the hardness of built materials in each zone of the built sample. The mechanical properties (hardness and tensile properties) of the WAAM-built thin-walled low-carbon steel parts are also comparable to those of wrought low-carbon steel, and to be adequate with real applications.


2018 ◽  
Vol 65 (4) ◽  
pp. 179-186 ◽  
Author(s):  
Damjan Klobčar ◽  
Maja Lindič ◽  
Matija Bušić

AbstractThis paper presents an overview of additive manufacturing technologies for production of metal parts. A special attention is set to wire arc additive manufacturing (WAAM) technologies, which include MIG/MAG welding, TIG welding and plasma welding. Their advantages compared to laser or electron beam technologies are lower investment and operational costs. However, these processes have lower dimensional accuracy of produced structures. Owing to special features and higher productivity, the WAAM technologies are more suitable for production of bigger parts. WAAM technology has been used together with welding robot and a cold metal transfer (CMT) power source. Thin walls have been produced using G3Si1 welding wire. The microstructure and hardness of produced structures were analysed and measured. A research was done to determine the optimal welding parameters for production of thin walls with smooth surface. A SprutCAM software was used to make a code for 3D printing of sample part.


2021 ◽  
Author(s):  
Xiaoying Hong ◽  
Guiqian Xiao ◽  
Yancheng Zhang ◽  
Jie Zhou

Abstract In this paper, an automatic WAAM technology are proposed to realize the gradient additive remanufacturing of ultra-large hot forging dies. Firstly, a vertical additive manufacturing strategy and a normal additive manufacturing strategy are proposed to meet different additive manufacturing demands. Secondly, the basic principle of layering design of ultra-large hot forging dies is developed, and the wear resistance of Ni-based, Co-based and Fe-based alloys at room temperature and high temperature is analyzed. The Co-based alloy has the best high temperature wear resistance, which can be used on the surface of the hot forging die to strengthen the die. In order to control the forming quality of additive manufacturing, the relationship between welding parameters and weld shape was discussed, and the reverse system of welding process parameters was built. Finally, a typical aviation ultra-large hot forging die is selected as the research object. According to different stress and temperature distribution in different regions of the ultra-large hot forging die in service, materials with different properties are used in corresponding regions to improve the service life of the die, reduce the remanufacturing costs and improve the remanufacturing efficiency. The experimental results show that the service life of the hot forging die repaired by the automatic gradient function WAAM technology is significantly increased, the material is reduced by more than 50% and the production efficiency is increased by more than 50%.


2021 ◽  
Author(s):  
Anatoliy Zavdoveev ◽  
Valeriy Pozniakov ◽  
Thierry Baudin ◽  
Hyoung Seop Kim ◽  
Ilya Klochkov ◽  
...  

Abstract Industrial development continues to present challenges for manufacturers. One of them is additive manufacturing (AM) with metallic materials. One promising solution is wire arc additive manufacturing (WAAM). Currently, WAAM is a more promising tool for developers, firstly due to the simplicity of its realization and secondly for its cost-effectiveness. Building materials are represented by welding wires, so the deposition rate is favorable. A pulse power source is commonly used in this scheme of realization. Much less attention has been paid to the optimization of the power source working regime, i.e., welding mode. Indeed, the power determines the whole process of WAAM. Therefore, in the present work, an attempt has been made to perform a scientifically based design for the optimal welding mode. The austenitic welding wire was chosen to eliminate phase-transition effects in the solid state of the deposited metal. As a result of the investigation, the advantages of the designed welding mode for WAAM application are made clear. Successful efforts have been made to optimize welding modes for WAAM applications. This study is important for manufacturers as well as engineers and scientists.


2018 ◽  
Vol 789 ◽  
pp. 161-169 ◽  
Author(s):  
Yang Yang Li ◽  
Shu Yuan Ma ◽  
Chang Meng Liu ◽  
Meng Zhang

Wire arc additive manufacturing (WAAM) can achieve low-cost, short-cyclemanufacturing of titanium alloys and has promising application prospects. In this paper, themicrostructure and mechanical properties of both as-deposited and heat-treated Ti-6.5Al-3.5Mo-1.5Zr-0.3Si(TC11) alloys fabricated byWAAM were investigated. The results show that continuousgrain boundary α(αGB) phase and basket-weave microstructure can be observed in the as-depositedTC11 alloy. And the as-deposited alloy exhibits high ductility but low strength. After the annealingtreatment, the microstructure becomes thicker and the strength becomes lower. Accordingly, a duplexheat treatment near β transus was designed. We can observed that the content of α phase in themicrostructure was gradually decreased, and the continuous αGB was broken gradually. As thetemperature increases, the strength and ductility of TC11 alloy increase first and then decrease, andthe best comprehensive mechanical properties are achieved at 970°C.


2021 ◽  
Vol 11 (10) ◽  
pp. 4694
Author(s):  
Christian Wacker ◽  
Markus Köhler ◽  
Martin David ◽  
Franziska Aschersleben ◽  
Felix Gabriel ◽  
...  

Wire arc additive manufacturing (WAAM) is a direct energy deposition (DED) process with high deposition rates, but deformation and distortion can occur due to the high energy input and resulting strains. Despite great efforts, the prediction of distortion and resulting geometry in additive manufacturing processes using WAAM remains challenging. In this work, an artificial neural network (ANN) is established to predict welding distortion and geometric accuracy for multilayer WAAM structures. For demonstration purposes, the ANN creation process is presented on a smaller scale for multilayer beads on plate welds on a thin substrate sheet. Multiple concepts for the creation of ANNs and the handling of outliers are developed, implemented, and compared. Good results have been achieved by applying an enhanced ANN using deformation and geometry from the previously deposited layer. With further adaptions to this method, a prediction of additive welded structures, geometries, and shapes in defined segments is conceivable, which would enable a multitude of applications for ANNs in the WAAM-Process, especially for applications closer to industrial use cases. It would be feasible to use them as preparatory measures for multi-segmented structures as well as an application during the welding process to continuously adapt parameters for a higher resulting component quality.


Sign in / Sign up

Export Citation Format

Share Document