Comparison of electropolished 316L steel samples manufactured by SLM and traditional technology

2019 ◽  
Vol 25 (3) ◽  
pp. 566-580 ◽  
Author(s):  
Edyta Lyczkowska-Widlak ◽  
Pawel Lochynski ◽  
Ginter Nawrat ◽  
Edward Chlebus

Purpose This paper aims to present the way of modifying surfaces of 316L stainless steel elements that were manufactured in the selected laser melting (SLM) technology and then subjected to mechanical and electrolytic processing (electropolishing [EP]). The surface of the as-generated and commercial produced parts was modified by grinding and EP, and the results were compared. The authors also present an example of the application of EP for the final processing of a sample technological model – an initial prototype of a 316L steel implant manufactured in the SLM technology. Design/methodology/approach The analyzed properties included surface topography, roughness, resistance to corrosion, microhardness and the chemical composition of the surface before and after EP. The roughness described with the Ra, Rt and Rz was determined before and after EP of samples manufactured from 316L steel with use of traditional methods and additive technologies. Findings EP provides us with the opportunity to process elements with a complex structure, which would not be possible with use of other methods (such as milling or grinding). Depending on the expected final surface of elements after the SLM process, it is possible to reduce the surface roughness with the use of EP (for t = 20 min, Ra = 3.53 ± 0.37 µm and for t = 40 min, Ra = 3.23 ± 0.22 µm) or mechanical processing and EP (for t = 4 min, Ra = 0.13 ± 0.02 µm). The application of the EP method to elements made from 316L steel, in a bath consisting of sulfuric acid (VI), H2SO4 (35 Vol.%), phosphoric acid (V), H3PO4 (60.5 Vol.%) and triethanolamine 99 per cent (4.5 Vol.%), allows us to improve the surface smoothness and to obtain a value of the Ra parameter ranging from 0.11 to 0.15 µm. The application of a current density of 20 A/dm2 and a bath temperature of 55ºC results in an adequate smoothing of the surface (Ra < 0.16 µm) for both cold rolled and SLM elements after grinding. The application of EP, to both cold rolled elements and those after SLM, considerably improves the resistance to corrosion. The results of potentiodynamic corrosion resistance tests (jkor, EKA and Vp) of the 316L stainless steel samples demonstrate that the values of Vp for elements subjected to EP (commercial material: 1.3·10-4 mm/year, SLM material: 3.5·10-4 mm/year) are lower than for samples that were only ground (commercial material: 4.0·10-4 mm/year, SLM material: 9.6·10-4 mm/year). The microhardness was found to be significantly higher in elements manufactured using SLM technology than in those cold rolled and ground. The ground 316L steel samples were characterized by a microhardness of 318 HV (cold rolled) and 411 HV (SLM material), whereas the microhardness of samples subjected to EP was 230 HV (commercial material) and 375 HV (SLM material). Originality/value The 316L samples were built by SLM method. The surface of the SLM samples was modified by EP. Surface morphological changes after EP were studied using optical methods. Potentiodynamic tests enabled to notice changes in the corrosion resistance of 316L. Microhardness results after electropolished 316L stainless steel were shown. The chemical composition of 316L surface samples was presented. The smoothening of the surface amounted to Ra = 0.16 µm.

2022 ◽  
Vol 60 (1) ◽  
pp. 46-52
Author(s):  
Young Woo Seo ◽  
Chan Yang Kim ◽  
Bo Kyung Seo ◽  
Won Sub Chung

This study evaluated changes in delta-ferrite content depending on the preheating of AISI 316L stainless steel. We also determined the reasons for the variation in delta-ferrite content, which affects corrosion resistance. Changes in delta-ferrite content after preheating was confirmed using a Feritscope, and the microstructure was analyzed using optical microscopy (OM). We found that the delta-ferrite microstructure size decreased when preheating time was increased at 1295 oC, and that the delta-ferrite content could be controlled through preheating. Potentiodynamic polarization test were carried out in NaCl (0.5 M) + H2SO4 (0.5 M) solution, and it was found that higher delta-ferrite content resulted in less corrosion potential and passive potential. To determine the cause, an analysis was conducted using energy-dispersive spectroscopy (EDS), which confirmed that higher delta-ferrite content led to weaker corrosion resistance, due to Cr degradation at the delta-ferrite and austenite boundaries. The degradation of Cr on the boundaries between austenite and delta-ferrite can be explained by the difference in the diffusion coefficient of Cr in the ferrite and austenite. A scanning electron microscopy (SEM) analysis of material used for actual semiconductor piping confirmed that corrosion begins at the delta-ferrite and austenite boundaries. These results confirm the need to control delta-ferrite content in AISI 316L stainless steel used for semiconductor piping.


2021 ◽  
Vol 21 (2) ◽  
pp. 178
Author(s):  
I Nyoman Jujur ◽  
Sri Endah Susilowati ◽  
Seto Roseno ◽  
Agus Hadi Santosa Wargadipura

To improve mechanical properties, especially elongation, of as-cast medical grade 316L stainless steel, niobium (Nb) was introduced into the alloys, followed by solution heat treatment. Alloying was performed using a 250 kg air induction melting furnace with duplex raw materials and ferronickel. Heat treatment using a solution at 1040 oC, with a holding time of 45 minutes, and water quenching was used. The sample was tested using hardness and ultimate tensile machines. Corrosion tests with simulated body fluids were carried out using media with similar corrosion conditions to human blood. Microstructure observations were performed optically. The results show that the addition of Nb increases the hardness of medical grade 316L stainless steel by 6% compared to the unalloyed steel, both before and after heat treatment. The addition of Nb increases the tensile strength by 8% compared to non-heat treated steel and increases the elongation before and after heat treatment by 8% and 5%, respectively. However, the corrosion rate of the material with Nb is higher than without the addition of Nb. Nb as a carbide former improves the mechanical properties of medical grade 316L stainless steel but adversely affects its corrosion resistance


2005 ◽  
Vol 3 (9) ◽  
pp. 495-505 ◽  
Author(s):  
Sachiko Hiromoto ◽  
Takao Hanawa

Potentiodynamic polarization and impedance tests were carried out on 316L stainless steel with culturing murine fibroblast L929 cells to elucidate the corrosion behaviour of 316L steel with L929 cells and to understand the electrochemical interface between 316L steel and cells, respectively. Potential step test was carried out on 316L steel with type I collagen coating and culturing L929 cells to compare the effects of collagen and L929 cells. The open-circuit potential of 316L steel slightly shifted in a negative manner and passive current density increased with cells, indicating a decrease in the protective ability of passive oxide film. The pitting potential decreased with cells, indicating a decrease in the pitting corrosion resistance. In addition, a decrease in diffusivity at the interface was indicated from the decrease in the cathodic current density and the increase in the diffusion resistance parameter in the impedance test. The anodic peak current in the potential step test decreased with cells and collagen. Consequently, the corrosion resistance of 316L steel decreases with L929 cells. In addition, collagen coating would provide an environment for anodic reaction similar to that with culturing cells.


2012 ◽  
Vol 727-728 ◽  
pp. 96-101
Author(s):  
Isaac Jamil Sayeg ◽  
Renato Altobelli Antunes ◽  
Mara Cristina Lopes de Oliveira

In this work, the corrosion resistance of passivated PIM 316L stainless steel specimens was evaluated in 1M H2SO4 + 2 ppm HF solution at room temperature during 28 days of immersion. Passivation was carried out in HNO3and H2SO4solutions. The electrochemical behavior of the passivated specimens was assessed through electrochemical impedance spectroscopy and anodic polarization curves. Scanning electron microscopy (SEM) was employed to observe the surface of the specimens before and after the passivation treatments. The results pointed to a strong influence of the passivation conditions on the corrosion resistance of the specimens.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7517
Author(s):  
Ewa Ura-Bińczyk

The effect of hydrostatic extrusion (HE) on the microstructure, uniform corrosion, and susceptibility to a localized attack of 316L stainless steel was studied. Both qualitative and quantitative analyses of inclusions before and after HE were carried out. The multiplication of non-metallic inclusions after HE lowered the stability of the passive film over a broad range of pH, while refinement of the matrix had a minor effect on it. The refined materials were prone to metastable pitting, but their pitting corrosion resistance was improved.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4074
Author(s):  
Felix Großwendt ◽  
Louis Becker ◽  
Arne Röttger ◽  
Abootorab Baqerzadeh Chehreh ◽  
Anna Luise Strauch ◽  
...  

This work aims to show the impact of the allowed chemical composition range of AISI 316L stainless steel on its processability in additive manufacturing and on the resulting part properties. ASTM A276 allows the chromium and nickel contents in 316L stainless steel to be set between 16 and 18 mass%, respectively, 10 and 14 mass%. Nevertheless, the allowed compositional range impacts the microstructure formation in additive manufacturing and thus the properties of the manufactured components. Therefore, this influence is analyzed using three different starting powders. Two starting powders are laboratory alloys, one containing the maximum allowed chromium content and the other one containing the maximum nickel content. The third material is a commercial powder with the chemical composition set in the middle ground of the allowed compositional range. The materials were processed by laser-based powder bed fusion (PBF-LB/M). The powder characteristics, the microstructure and defect formation, the corrosion resistance, and the mechanical properties were investigated as a function of the chemical composition of the powders used. As a main result, solid-state cracking could be observed in samples additively manufactured from the starting powder containing the maximum nickel content. This is related to a fully austenitic solidification, which occurs because of the low chromium to nickel equivalent ratio. These cracks reduce the corrosion resistance as well as the elongation at fracture of the additively manufactured material that possesses a low chromium to nickel equivalent ratio of 1.0. A limitation of the nickel equivalent of the 316L type steel is suggested for PBF-LB/M production. Based on the knowledge obtained, a more detailed specification of the chemical composition of the type 316L stainless steel is recommended so that this steel can be PBF-LB/M processed to defect-free components with the desired mechanical and chemical properties.


Alloy Digest ◽  
1995 ◽  
Vol 44 (6) ◽  

Abstract BioDur 316LS stainless steel is a modified version of Type 316L stainless steel to improve corrosion resistance for surgical implant applications. The alloy is vacuum arc remelted. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-596. Producer or source: Carpenter.


Alloy Digest ◽  
2015 ◽  
Vol 64 (7) ◽  

Abstract EnduraMet 316LN stainless is a nitrogen strengthened version of Type 316L stainless steel. This datasheet provides information on composition, physical properties, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-1219. Producer or source: Carpenter Technology Corporation.


2021 ◽  
Vol 28 (3) ◽  
pp. 440-449
Author(s):  
K. Bin Tayyab ◽  
A. Farooq ◽  
A. Ahmed Alvi ◽  
A. Basit Nadeem ◽  
K. M. Deen

Sign in / Sign up

Export Citation Format

Share Document