scholarly journals Characterization and Sodium Cations Sorption Capacity of Chemically Modified Biochars Produced from Agricultural and Forestry Wastes

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4714
Author(s):  
Agnieszka Medyńska-Juraszek ◽  
María Luisa Álvarez ◽  
Andrzej Białowiec ◽  
Maria Jerzykiewicz

Excessive amounts of sodium cations (Na+) in water is an important limiting factor to reuse poor quality water in agriculture or industry, and recently, much attention has been paid to developing cost-effective and easily available water desalination technology that is not limited to natural resources. Biochar seems to be a promising solution for reducing high loads of inorganic contaminant from water and soil solution, and due to the high availability of biomass in agriculture and forestry, its production for these purposes may become beneficial. In the present research, wheat straw, sunflower husk, and pine-chip biochars produced at 250, 450 and 550 °C under simple torrefaction/pyrolysis conditions were chemically modified with ethanol or HCl to determine the effect of these activations on Na sorption capacity from aqueous solution. Biochar sorption property measurements, such as specific surface area, cation exchange capacity, content of base cations in exchangeable forms, and structural changes of biochar surface, were performed by FTIR and EPR spectrometry to study the effect of material chemical activation. The sorption capacity of biochars and activated carbons was investigated by performing batch sorption experiments, and adsorption isotherms were tested with Langmuir’s and Freundlich’s models. The results showed that biochar activation had significant effects on the sorption characteristics of Na+, increasing its capacity (even 10-folds) and inducing the mechanism of ion exchange between biochar and saline solution, especially when ethanol activation was applied. The findings of this study show that biochar produced through torrefaction with ethanol activation requires lower energy demand and carbon footprint and, therefore, is a promising method for studying material applications for environmental and industrial purposes.

Carbon ◽  
2000 ◽  
Vol 38 (5) ◽  
pp. 669-674 ◽  
Author(s):  
H Benaddi ◽  
T.J Bandosz ◽  
J Jagiello ◽  
J.A Schwarz ◽  
J.N Rouzaud ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2951
Author(s):  
Mirosław Kwiatkowski ◽  
Jarosław Serafin ◽  
Andy M. Booth ◽  
Beata Michalkiewicz

This paper presents the results of a computer analysis of the effect of activation process temperature on the development of the microporous structure of activated carbon derived from the leaves of common polypody (Polypodium vulgare) via chemical activation with phosphoric acid (H3PO4) at activation temperatures of 700, 800, and 900 °C. An unconventional approach to porous structure analysis, using the new numerical clustering-based adsorption analysis (LBET) method together with the implemented unique gas state equation, was used in this study. The LBET method is based on unique mathematical models that take into account, in addition to surface heterogeneity, the possibility of molecule clusters branching and the geometric and energy limitations of adsorbate cluster formation. It enabled us to determine a set of parameters comprehensively and reliably describing the porous structure of carbon material on the basis of the determined adsorption isotherm. Porous structure analyses using the LBET method were based on nitrogen (N2), carbon dioxide (CO2), and methane (CH4) adsorption isotherms determined for individual activated carbon. The analyses carried out showed the highest CO2 adsorption capacity for activated carbon obtained was at an activation temperature of 900 °C, a value only slightly higher than that obtained for activated carbon prepared at 700 °C, but the values of geometrical parameters determined for these activated carbons showed significant differences. The results of the analyses obtained with the LBET method were also compared with the results of iodine number analysis and the results obtained with the Brunauer–Emmett–Teller (BET), Dubinin–Radushkevich (DR), and quenched solid density functional theory (QSDFT) methods, demonstrating their complementarity.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2045
Author(s):  
Mirosław Kwiatkowski ◽  
Elżbieta Broniek ◽  
Vanessa Fierro ◽  
Alain Celzard

This paper presents the results of an evaluation of the impact of the amount of potassium hydroxide on the obtained porous structure of the activated carbons derived from the shells of pistachios, hazelnuts, and pecans by carbonization and subsequent chemical activation with potassium hydroxide by different adsorption methods: Brunauer–Emmett–Teller, Dubinin–Raduskevich, the new numerical clustering-based adsorption analysis, Quenched Solid Density Functional Theory, and 2D-Non-linear Density Functional Theory for Heterogeneous Surfaces, applied to nitrogen adsorption isotherms at −196 °C. Based on the conducted research, a significant potential for the production of activated carbons from waste materials, such as nut shells, has been demonstrated. All the activated carbons obtained in the present study at the activator/char mass ratio R = 4 exhibited the most developed porous structure, and thus very good adsorption properties. However, activated carbons obtained from pecan shells deserve special attention, as they were characterized by the most homogeneous surface among all the samples analyzed, i.e., by a very desirable feature in most adsorption processes. The paper demonstrates the necessity of using different methods to analyze the porous structure of activated carbons in order to obtain a complete picture of the studied texture. This is because only a full spectrum of information allows for correctly selecting the appropriate technology and conditions for the production of activated carbons dedicated to specific industrial applications. As shown in this work, relying only on the simplest methods of adsorption isotherm analysis can lead to erroneous conclusions due to lack of complete information on the analyzed porous structure. This work thus also explains how and why the usual characterizations of the porous structure of activated carbons derived from lignocellulosic biomass should not be taken at face value. On the contrary, it is advisable to cross reference several models to get a precise idea of the adsorbent properties of these materials, and therefore to propose the most suitable production technology, as well as the conditions of the preparation process.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4121
Author(s):  
Mirosław Kwiatkowski ◽  
Elżbieta Broniek

In this study, the preparation of activated carbons from various materials of biomass origin by activation with potassium hydroxide and a comprehensive computer analysis of their porous structure and adsorption properties based on benzene (C6H6) adsorption isotherms were carried out. In particular, the influence of the mass ratio of the activator’s dry mass to the char mass on the formation of the microporous structure of the obtained activated carbons was analysed. The summary of the analyses carried out based on benzene adsorption isotherms begged the conclusion that activated carbon with a maximum adsorption volume in the first adsorbed layer and homogeneous surface can be obtained from ebony wood at a mass ratio of the activator to the char of R = 3. The obtained results confirmed the superiority of the new numerical-clustering-based adsorption analysis (LBET) method over simple methods of porous structure analysis, such as the Brunauer–Emmett–Teller (BET) and Dubinin–Raduskevich (DR) methods. The LBET method is particularly useful in the evaluation of the influence of the methods and conditions of production of activated carbons on the formation of their porous structure. This method, together with an appropriate economic analysis, can help in the precise selection of methods and conditions for the process of obtaining activated carbons at specific manufacturing costs, and thus makes it possible to obtain materials that can successfully compete with those of other technologies used in industrial practice and everyday life.


2012 ◽  
Vol 1 (3) ◽  
pp. 75 ◽  
Author(s):  
W.D.P Rengga ◽  
M. Sudibandriyo ◽  
M Nasikin

Gas storage is a technology developed with an adsorptive storage method, in which gases are stored as adsorbed components on the certain adsorbent. Formaldehyde is one of the major indoor gaseous pollutants. Depending on its concentration, formaldehyde may cause minor disorder symptoms to a serious injury. Some of the successful applications of technology for the removal of formaldehyde have been reported. However, this paper presents an overview of several studies on the elimination of formaldehyde that has been done by adsorption method because of its simplicity. The adsorption method does not require high energy and the adsorbent used can be obtained from inexpensive materials. Most researchers used activated carbon as an adsorbent for removal of formaldehyde because of its high adsorption capacity. Activated carbons can be produced from many materials such as coals, woods, or agricultural waste. Some of them were prepared by specific activation methods to improve the surface area. Some researchers also used modified activated carbon by adding specific additive to improve its performance in attracting formaldehyde molecules. Proposed modification methods on activation and additive impregnated carbon are thus discussed in this paper for future development and improvement of formaldehyde adsorption on activated carbon. Specifically, a waste agricultural product is chosen for activated carbon raw material because it is renewable and gives an added value to the materials. The study indicates that the performance of the adsorption of formaldehyde might be improved by using modified activated carbon. Bamboo seems to be the most appropriate raw materials to produce activated carbon combined with applying chemical activation method and addition of metal oxidative catalysts such as Cu or Ag in nano size particles. Bamboo activated carbon can be developed in addition to the capture of formaldehyde as well as the storage of adsorptive hydrogen gas that supports renewable energy. Keywords: adsorption; bamboo; formaldehyde; modified activated carbon; nano size particles


2014 ◽  
Vol 70 (1) ◽  
pp. 136-143 ◽  
Author(s):  
K. Y. Lee ◽  
K. W. Kim ◽  
Y. J. Baek ◽  
D. Y. Chung ◽  
E. H. Lee ◽  
...  

The uranium(VI) adsorption efficiency of non-living biomass of brown algae was evaluated in various adsorption experimental conditions. Several different sizes of biomass were prepared using pretreatment and surface-modification steps. The kinetics of uranium uptake were mainly dependent on the particle size of the prepared Laminaria japonica biosorbent. The optimal particle size, contact time, and injection amount for the stable operation of the wastewater treatment process were determined. Spectroscopic analyses showed that uranium was adsorbed in the porous inside structure of the biosorbent. The ionic diffusivity in the biomass was the dominant rate-limiting factor; therefore, the adsorption rate was significantly increased with decrease of particle size. From the results of comparative experiments using the biosorbents and other chemical adsorbents/precipitants, such as activated carbons, zeolites, and limes, it was demonstrated that the brown algae biosorbent could replace the conventional chemicals for uranium removal. As a post-treatment for the final solid waste reduction, the ignition treatment could significantly reduce the weight of waste biosorbents. In conclusion, the brown algae biosorbent is shown to be a favorable adsorbent for uranium(VI) removal from radioactive wastewater.


Sign in / Sign up

Export Citation Format

Share Document