scholarly journals Development of High-Performance Thermoelectric Materials by Microstructure Control of P-Type BiSbTe Based Alloys Fabricated by Water Atomization

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4870
Author(s):  
Babu Madavali ◽  
Pathan Sharief ◽  
Kyoung-Tae Park ◽  
Gian Song ◽  
Song-Yi Back ◽  
...  

Developing inexpensive and rapid fabrication methods for high efficiency thermoelectric alloys is a crucial challenge for the thermoelectric industry, especially for energy conversion applications. Here, we fabricated large amounts of p-type Cu0.07Bi0.5Sb1.5Te3 alloys, using water atomization to control its microstructure and improve thermoelectric performance by optimizing its initial powder size. All the water atomized powders were sieved with different aperture sizes, of 32–75 μm, 75–125 μm, 125–200 μm, and <200 μm, and subsequently consolidated using hot pressing at 490 °C. The grain sizes were found to increase with increasing powder particle size, which also increased carrier mobility due to improved carrier transport. The maximum electrical conductivity of 1457.33 Ω−1 cm−1 was obtained for the 125–200 μm samples due to their large grain sizes and subsequent high mobility. The Seebeck coefficient slightly increased with decreasing particle size due to scattering of carriers at fine grain boundaries. The higher power factor values of 4.20, 4.22 × 10−3 W/mk2 were, respectively, obtained for large powder specimens, such as 125–200 μm and 75–125 μm, due to their higher electrical conductivity. In addition, thermal conductivity increased with increasing particle size due to the improvement in carriers and phonons transport. The 75–125 μm powder specimen exhibited a relatively high thermoelectric figure of merit, ZT of 1.257 due to this higher electric conductivity.

2021 ◽  
Vol 19 (10) ◽  
pp. 106-114
Author(s):  
Hani M Hussien

The polymer composites used in the present study were made of polyvinyl alcohol (PVA) as a matrix and glass powder as a filler. The glass powder was obtained from fluorescent tubes waste. The solution casting method was used to fabricate PVA/glass powder composite. Three groups of samples were prepared. The first was prepared by using PVA with the addition of glass powder (sieved less than 20 μm) in proportions 10, 20, 30, 40, and 50 %. The second: the mixing ratios of PVA and glass powder were 80% and 20%, respectively. The third: The mixing ratios of PVA and glass powder were 60% and 40%, respectively. In Both previous groups, the added glass powder used was sieved with sizes less than 20, 45, 105, and 125 μm. For all samples, the following properties were measured at room temperature: DC electrical conductivity, dielectric constant, electrical conductivity, and dissipation factor. The last three properties were measured with a range of frequencies from 1kHz to 5MHz. DC conductivity increases with increasing of glass powder. It was found that the highest conductivity values are for samples composed of glass powder with a particle size of less than 45 μm for both ratios of glass 20% and 40%. It is also noticed that within most frequencies, the sample with 30% glass has the largest dissipation factor. At 20% filler of glass powder, it is noted that the highest values of the dielectric constant are for samples composed of glass powder with a particle size of less than 45 μm and 125 μm. Below 1 MHz, the effect of glass powder particle size on the AC conductivity is minimal. It is found that the samples containing glass powder (less than 125 μm and 105 μm), have similar and lowest dissipation factor. At 40% filler of glass powder, it is noted that the lowest values of the dielectric constant are for samples composed of glass powder with a particle size little than 105 μm.


2020 ◽  
Vol 8 (28) ◽  
pp. 9549-9557 ◽  
Author(s):  
Yan Fu ◽  
Huijun Liu ◽  
Xiangyu Zhu ◽  
Jiajie Zeng ◽  
Zujin Zhao ◽  
...  

The integration of bipolar carrier transport materials with an aggregation-induced delayed fluorescence unit generates robust luminescent materials, which lead to efficient nondoped OLEDs with high efficiency stability.


2015 ◽  
Vol 3 (40) ◽  
pp. 10415-10421 ◽  
Author(s):  
Satya N. Guin ◽  
Kanishka Biswas

We demonstrate a new strategy to control the carrier transport in AgSbSe2by introducing Sb deficiencies. Enhanced electrical conductivity and ultra-low thermal conductivity resulted a peak ZT value ∼1 at 610 K in Sb deficient AgSbSe2.


Nanophotonics ◽  
2016 ◽  
Vol 5 (4) ◽  
pp. 524-547 ◽  
Author(s):  
Yubin Chen ◽  
Xiaoyang Feng ◽  
Maochang Liu ◽  
Jinzhan Su ◽  
Shaohua Shen

AbstractPhotoelectrochemical (PEC) water splitting for hydrogen generation has been considered as a promising route to convert and store solar energy into chemical fuels. In terms of its large-scale application, seeking semiconductor photoelectrodes with high efficiency and good stability should be essential. Although an enormous number of materials have been explored for solar water splitting in the last several decades, challenges still remain for the practical application. P-type copper-based chalcogenides, such as Cu(In, Ga)Se2 and Cu2ZnSnS4, have shown impressive performance in photovoltaics due to narrow bandgaps, high absorption coefficients, and good carrier transport properties. The obtained high efficiencies in photovoltaics have promoted the utilization of these materials into the field of PEC water splitting. A comprehensive review on copper-based chalcogenides for solar-to-hydrogen conversion would help advance the research in this expanding area. This review will cover the physicochemical properties of copper-based chalco-genides, developments of various photocathodes, strategies to enhance the PEC activity and stability, introductions of tandem PEC cells, and finally, prospects on their potential for the practical solar-to-hydrogen conversion. We believe this review article can provide some insights of fundamentals and applications of copper-based chalco-genide thin films for PEC water splitting.


2018 ◽  
Vol 20 (13) ◽  
pp. 8658-8667 ◽  
Author(s):  
Thao P. Nguyen ◽  
P. Roy ◽  
Ji Hoon Shim

A density functional theory (DFT) calculation predicts phenacene as one of the most promising organic semiconductors for high efficiency electronic devices.


RSC Advances ◽  
2015 ◽  
Vol 5 (18) ◽  
pp. 13324-13330 ◽  
Author(s):  
Lin-Bao Luo ◽  
Shun-Hang Zhang ◽  
Rui Lu ◽  
Wei Sun ◽  
Qun-Ling Fang ◽  
...  

p-type ZnTe:Ga nanowires with a tunable electrical conductivity can be used to fabricate a high-performance semiconductor/graphene Schottky diode photodetector.


2020 ◽  
Vol 8 (46) ◽  
pp. 24675-24684
Author(s):  
Yanzhao Wang ◽  
Zhanhua Chen ◽  
Hongfeng Huang ◽  
Dagang Wang ◽  
Danqing Liu ◽  
...  

Organic radical compound and SWCNT composites for high-performance p-type and n-type thermoelectric materials.


2006 ◽  
Vol 514-516 ◽  
pp. 718-722
Author(s):  
F. Potecasu ◽  
O. Potecasu ◽  
Francisco Manuel Braz Fernandes ◽  
Viorica Muşat

Lead hardened through oxide scattering is investigated as raw materials for the fabrication of the support gratings of lead accumulators in order to increase their life service. For the preparation of lead powder hardened through oxide scattering we used air jet pulverisation, a technique specific to powder metallurgy. Two research approaches are presented in the paper: one in which the oxide was introduced through oxidised lead powder, and the other in which additional lead oxide was introduced. Oxide dispersion into metallic matrix was achieved by pronounced deformation through extrusion of the powder. During extrusion, the particles are compelled to pass through the mould calibration zone and consequently they are considerably deformed. As an effect of this deformation, the particles of fragile oxide which cover the lead powder particles are crashed and carried away to the material flowing through the matrix longitudinally on the extruded semiproduct. The content of oxide introduced in matrix by the oxidised lead powder depends on the powder particle size. This paper presents the effect of the powder particle size and oxide phase dispersion in the metallic matrix on the mechanical, chemical and electrical properties of the extruded semi-products. The semi-products made from lead powder belonging to the grain size class of < 40 µm and oxide particles allowance have the highest mechanical resistance and the best corrosion behaviour. Using controlled oxidised lead powder better extruded semi-products are obtained in terms of mechanical resistance, corrosion behaviour and electrical conductivity as compared with lead and Pb-Sb alloy. A higher electrical conductivity represents an important advantage especially for the starting accumulators where the voltage fall should be as low as possible.


Nanoscale ◽  
2018 ◽  
Vol 10 (28) ◽  
pp. 13511-13519 ◽  
Author(s):  
Zhuang-hao Zheng ◽  
Ping Fan ◽  
Jing-ting Luo ◽  
Guang-xing Liang ◽  
Hong-li Ma ◽  
...  

The performance of organic–inorganic hybrid thermoelectric thin films can be dramatically enhanced by optimizing energy filtering and carrier transport states at the organic–inorganic interfaces.


Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 69
Author(s):  
Moisés Oñoro ◽  
Julio Macías-Delgado ◽  
María A. Auger ◽  
Jan Hoffmann ◽  
Vanessa de Castro ◽  
...  

Reduced activation ferritic (RAF) steels are expected to be widely used in challenging nuclear industrial applications under severe thermo-mechanical regimes and intense neutron loads. Therefore, actual research panorama is facing the strengthening strategies necessary to maximize both performance and endurance under these conditions. Oxide dispersion strengthened (ODS) RAF steels are leader candidates as structural materials in fusion energy reactors thanks to the reinforcement obtained with a fine dispersion of nanosized oxides in their matrix. In this study, the influence of the initial powder particle size and the selected processing route on the final material has been investigated. Two RAF ODS steels coming from atomized pre-alloyed powders with nominal particle powder sizes of 70 and 30 µm and composition Fe-14Cr-2W-0.4Ti-0.3Y2O3 (wt. %) were manufactured by mechanical alloying. Alloyed powders were compacted by hot isostatic pressing, hot crossed rolled, and annealed at 1273 K. Initial powder particle size differences minimize after milling. Both steels present an almost completely recrystallized material and similar grain sizes. The same type and distributions of secondary phases, Cr-W-rich, Ti-rich, and Y-Ti oxide nanoparticles, have been also characterized by transmission electron microscopy (TEM) in both alloy samples. The strengthening effect has been confirmed by tensile and Charpy impact tests. The two alloys present similar strength values with slightly better ductile brittle transition temperature (DBTT) and ductility for the steel produced with the smaller powder size.


Sign in / Sign up

Export Citation Format

Share Document