scholarly journals Experimental Study on Consolidation-Creep Behavior of Subgrade Modified Soil in Seasonally Frozen Areas

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5138
Author(s):  
Fuyu Wang ◽  
Weichen Pang ◽  
Ziqi Li ◽  
Haibin Wei ◽  
Leilei Han

Frost heaving and boiling are the most common road disorders due to the special climatic conditions in a seasonal frozen area. From the perspective of controlling road disorders in seasonally frozen areas and making effective use of industrial waste residue, two kinds of subgrade modified soil—crumb rubber modified fly ash soil (CRFS) and oil shale waste residue modified fly ash soil (OSFS)—were proposed by the research group. The research results proved that the two new subgrade fillers both have excellent engineering characteristics in cold areas, such as high strength and low thermal conductivity, and both have the function of waste utilization, giving them broad application prospects. In road engineering, the instability of slopes and retaining walls and the uneven settlement of the subgrade are closely related to soil creep, which are problems that cannot be ignored in road design and use. As a new material to treat road disorders in seasonally frozen areas, more attention should be paid to the continuous deformation property of modified soil under long-term load. The study on the creep characteristics of the modified soil can provide reliable parameters for the design of the modified soil subgrade and predict the settlement of the subgrade after construction, which is of great significance to the stability of the subgrade. In this paper, an experimental study on the consolidation–creep characteristics of two kinds of subgrade modified soil in a seasonal frozen region was carried out, the relationship between modified soil deformation and time is discussed, and the effects of different moisture contents and compaction degrees on the creep characteristics of modified soil were analyzed. The test results provide parameters for the engineering design of modified soil subgrade and provide data support for the popularization and application of modified soil in seasonally frozen subgrade.

2016 ◽  
Vol 835 ◽  
pp. 535-541
Author(s):  
Guan Guo Liu ◽  
Guo Rong Zhang ◽  
Yun Sheng Zhang ◽  
Lu Lu

A set of concrete tensile creep testing apparatus was constructed. The tensile creep characteristics of concrete under different loading ages (1d, 3d and 7d), different water-binder ratio (0.29, 0.33 and 0.37) and different fly ash proportion (0%, 20% and 40%) were researched. The results show that tensile creep increases with increasing of water-binder ratio obviously as well as with decreasing of loading ages. The tensile creep is inhibited by addition of fly ash, and the inhibition effect increases with the increase of fly ash proportion. Free shrinkage is counteracted 42%~62% by tensile creep. The internal tension of concrete is effectively relieved so that the possibility of cracking of concrete is decreased at early ages.


2015 ◽  
Vol 789-790 ◽  
pp. 38-42
Author(s):  
Nuria S. Mohammed ◽  
Ahmed Baharuddin Abd Rahman ◽  
Nur Hafizah A. Khalid ◽  
Musaab Ahmed

Polymer resin grout can be used as bonding material for grouted sleeve connections This paper presents the experimental results on the effectiveness of fly ash as micro filler to the splitting tensile strength of polymer grout. In addition, the cement grout that is usually used as bonding material had been tested for comparison. Eleven proportions, of fly ash as the filler and polymer as binder, were tested with the binder to filler volume ratios of 1:1 and 1:1.5. The test results revealed that fly ash can be used as a micro-filler material to partially replace ordinary river sand in polymer resin grout. The splitting tensile strength of the polymer grout increases with the increase of fly ash contents. However, for higher level of fly ash of more than 22%, the splitting tensile strength deteriorated. For binder: filler ratio of 1:1, the optimum fly ash content of 22% gave the maximum splitting strength of 17.62 MPa, which can be considered acceptable for producing grout with high strength bonding material.


2009 ◽  
Vol 45 (5) ◽  
pp. 1354-1360 ◽  
Author(s):  
Dilip Chandra Deb Nath ◽  
Sri Bandyopadhyay ◽  
Aibing Yu ◽  
Darryl Blackburn ◽  
Chris White

2021 ◽  
Vol 72 (4) ◽  
pp. 477-485
Author(s):  
Chi Dang Thuy

Cement-based grouts are widely used thanks to its outstanding features such as high workability, non-separation, non-bleeding, easy to fulfill small gaps with complex shapes. This paper descrcibes the first phase of a series of laboratory experiments that examined the ability of production of self - levelling mortar at the University of Transport and Communications. The Portland cement-based grout incorporated superplasticizer, fly ash, fine aggregate, water along with expansion agent to match as closed as possible the given high strength non-shrink grout. The experimental study focused on the performance of non-shrink grouts regarding the flowability, expansion and bleeding, strengths and drying shrinkage of the test grout mixtures. The high range water reducer (HRWR) at dosage of 1% by weight of cement was used as a flowability modifying chemical admixture to prevent water segregation and leads to an increase in compressive strength. The parameter tests consist of water-cement ratios, and fixed dosages of superplasticizer and expansive agent. To examine the flowability of grout mortars, the flow cone test was applied. The flow cone test result indicated that there were three proportional of grouts that can meet the requirement of fluidity. The compressive strength of specimens was tested according to ASTM C349-14. It was concluded that the compositions of grouts at a water-cement ratio of from 0.29 to 0.33 have compressive strengths greater than 60 MPa. The tested specimens using the expansive agent with the dosage recommended by the manufacturer meet the non-shrinkage requirement of a grout. The experimental results have demonstrated the ability of production of high strength non-shrink grouts.


Sign in / Sign up

Export Citation Format

Share Document